Please do not adjust margins
Chemical Science
Page 8 of 10
ARTICLE
Journal Name
perovskite and HTM.60 Actually, the dopant-free devices based
on FBA3 and FTA2 showed an enhanced stability in the high
humidity conditions than that from FBA2, which, we think,
could be due to their better film quality atop perovskite layer
as evidenced by AFM measurements (Figure 5).
Notes and references
DOI: 10.1039/C9SC01697J
1.
A. Kojima, Teshima, K., Shirai, Y., Miyasaka, T., J. Am. Chem. Soc., 2009, 131,
6050-6051.
2.
3.
4.
L. Meng, J. You and Y. Yang, Nat. Commun., 2018, 9, 5265.
C. C. Boyd, R. Cheacharoen, T. Leijtens and M. D. McGehee, Chem. Rev., 2019,
119, 3418-3451.
5.
6.
7.
N. H. Tiep, Z. Ku and H. J. Fan, Adv. Energy Mater., 2016, 6, 1501420.
A. Sharenko and M. F. Toney, J. Am. Chem. Soc., 2016, 138, 463-470.
Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen and Y. Chen, Adv. Sci., 2018, 5,
1700387.
Conclusions
In summary, we developed a new class of small molecule
dopant-free HTMs using readily available fluoranthene as the
structural framework. By tuning the structure geometry, the
connection between donor and acceptor and the substitution
position of methoxy groups, the materials structure was
carefully regulated and optimized with a purpose of studying
their impacts on molecular packing behaviors, thermal
properties, photophysical properties as well as the device
performance. Our results demonstrate the following important
points:
8.
9.
A. K. Jena, A. Kulkarni and T. Miyasaka, Chem. Rev., 2019, 119, 3036-3103.
B. Roose, Q. Wang and A. Abate, Adv. Energy Mater., 2019, 9, 1803140.
10. T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee and H. J. Snaith, Nat.
Commun., 2013, 4, 2885.
11. J. P. Bastos, U. W. Paetzold, R. Gehlhaar, W. Qiu, D. Cheyns, S. Surana, V.
Spampinato, T. Aernouts and J. Poortmans, Adv. Energy Mater., 2018, 8,
1800554.
12. S. Wang, Z. Huang, X. Wang, Y. Li, M. Günther, S. Valenzuela, P. Parikh, A.
Cabreros, W. Xiong and Y. S. Meng, J. Am. Chem. Soc., 2018, 140, 16720-16730.
13. Z. Yu and L. Sun, Small Methods, 2018, 2, 1700280.
14. Z. Yu and L. Sun, Adv. Energy Mater., 2015, 5, 1500213.
15. L. Calió, S. Kazim, M. Grätzel and S. Ahmad, Angew. Chem. Int. Ed., 2016, 55,
14522-14545.
16. J. Urieta-Mora, I. García-Benito, A. Molina-Ontoria and N. Martín, Chem. Soc.
(1) Replacing diphenylamine with triphenylamine as the
capped units of D-A type HTMs can effectively down-
shift the HOMO levels and increase the hole mobilities
of derived HTMs.
(2) Introducing ethylene as the connecting π-bridge can
marginally raise the HOMO levels but effectively
increase the hole mobilities of derived HTMs due to the
enhanced π-π interactions. However, it might result in
a poor antioxidant capacity.
Rev., 2018, 47, 8541-8571.
17. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M.
Grätzel and H. Han, Science, 2014, 345, 295-298.
18. X. Meng, J. Zhou, J. Hou, X. Tao, S. H. Cheung, S. K. So and S. Yang, Adv. Mater.,
2018, 30, 1706975.
19. Z. Wu, Z. Liu, Z. Hu, Z. Hawash, L. Qiu, Y. Jiang, L. K. Ono and Y. Qi, Adv. Mater.,
2019, 31, 1804284.
20. X. Sun, D. Zhao and Z. a. Li, Chin. Chem. Lett., 2018, 29, 219-231.
21. W. Zhou, Z. Wen and P. Gao, Adv. Energy Mater., 2018, 8, 1702512.
22. J. H. Heo, S. Park, S. H. Im and H. J. Son, ACS Appl. Mater. Interfaces, 2017, 9,
39511-39518.
23. J. H. Yun, S. Park, J. H. Heo, H.-S. Lee, S. Yoon, J. Kang, S. H. Im, H. Kim, W. Lee, B.
Kim, M. J. Ko, D. S. Chung and H. J. Son, Chem. Sci., 2016, 7, 6649-6661.
24. P. Qin, H. Kast, M. K. Nazeeruddin, S. M. Zakeeruddin, A. Mishra, P. Bäuerle and
M. Grätzel, Energy Environ. Sci., 2014, 7, 2981-2985.
(3) By comparison with linear structure, the branched
o
materials can considerably increase the Tgs over 20 C
25. M. Cheng, K. Aitola, C. Chen, F. Zhang, P. Liu, K. Sveinbjörnsson, Y. Hua, L. Kloo,
G. Boschloo and L. Sun, Nano Energy, 2016, 30, 387-397.
26. C. Chen, M. Cheng, P. Liu, J. Gao, L. Kloo and L. Sun, Nano Energy, 2016, 23, 40-
49.
27. Y. Liu, Z. Hong, Q. Chen, H. Chen, W. H. Chang, Y. M. Yang, T. B. Song and Y. Yang,
Adv. Mater., 2016, 28, 440-446.
28. Y. Liu, Q. Chen, H.-S. Duan, H. Zhou, Y. Yang, H. Chen, S. Luo, T.-B. Song, L. Dou, Z.
Hong and Y. Yang, J. Mater. Chem. A, 2015, 3, 11940-11947.
29. G.-W. Kim, G. Kang, J. Kim, G.-Y. Lee, H. I. Kim, L. Pyeon, J. Lee and T. Park, Energy
Environ. Sci., 2016, 9, 2326-2333.
and enable better film quality atop perovskite layer.
However, it might incur lower hole mobilities.
(4) Meta-methoxy substitutions can be used as an
effective structural design strategy to down-shift the
HOMO levels and improve the hole mobilities of
derived HTMs; whereas, this design would decrease
the thermal stability.
30. J. Lee, M. M. Byranvand, G. Kang, S. Y. Son, S. Song, G. W. Kim and T. Park, J. Am.
Chem. Soc., 2017, 139, 12175-12181.
31. G.-W. Kim, J. Lee, G. Kang, T. Kim and T. Park, Adv. Energy Mater., 2018, 8,
Based on this systematic structure-property study, the
inherent regularity governing the structure of dopant-free
HTMs has been demonstrated preliminarily. Our designed
fluoranthene-cored molecules can work as efficient dopant-
free HTMs to realize high-performance n-i-p planar PVSCs
associated with improved device stability. In particular, FBA3
with a low lab synthetic cost of 14.75 $/g can produce an
impressive PCE of 19.27%, representing one of the best cost-
effective dopant-free organic HTMs reported thus far.
1701935.
32. Y. S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim and T. Park, Energy Environ. Sci., 2014, 7,
1454-1460.
33. H.-C. Liao, T. L. D. Tam, P. Guo, Y. Wu, E. F. Manley, W. Huang, N. Zhou, C. M. M.
Soe, B. Wang, M. R. Wasielewski, L. X. Chen, M. G. Kanatzidis, A. Facchetti, R. P.
H. Chang and T. J. Marks, Adv. Energy Mater., 2016, 6, 1600502.
34. K. Kranthiraja, K. Gunasekar, H. Kim, A. N. Cho, N. G. Park, S. Kim, B. J. Kim, R.
Nishikubo, A. Saeki, M. Song and S. H. Jin, Adv. Mater., 2017, 29, 1700183.
35. M. Franckevičius, A. Mishra, F. Kreuzer, J. Luo, S. M. Zakeeruddin and M. Grätzel,
Mater. Horiz., 2015, 2, 613-618.
36. F. Zhang, C. Yi, P. Wei, X. Bi, J. Luo, G. Jacopin, S. Wang, X. Li, Y. Xiao, S. M.
Zakeeruddin and M. Grätzel, Adv. Energy Mater., 2016, 6, 1600401.
37. C. Huang, W. Fu, C. Z. Li, Z. Zhang, W. Qiu, M. Shi, P. Heremans, A. K. Jen and H.
Chen, J. Am. Chem. Soc., 2016, 138, 2528-2531.
Conflicts of interest
38. C. Yin, J. Lu, Y. Xu, Y. Yun, K. Wang, J. Li, L. Jiang, J. Sun, A. D. Scully, F. Huang, J.
Zhong, J. Wang, Y.-B. Cheng, T. Qin and W. Huang, Adv. Energy Mater., 2018, 8,
1800538.
There are no conflicts to declare.
39. C. Shen, Y. Wu, H. Zhang, E. Li, W. Zhang, X. Xu, W. Wu, H. Tian and W. H. Zhu,
Angew. Chem. Int. Ed. , 2019, 58, 3784-3789.
40. S. Paek, P. Qin, Y. Lee, K. T. Cho, P. Gao, G. Grancini, E. Oveisi, P. Gratia, K.
Rakstys, S. A. Al-Muhtaseb, C. Ludwig, J. Ko and M. K. Nazeeruddin, Adv. Mater.,
2017, 29, 1606555.
41. K. Rakstys, S. Paek, P. Gao, P. Gratia, T. Marszalek, G. Grancini, K. T. Cho, K.
Genevicius, V. Jankauskas, W. Pisula and M. K. Nazeeruddin, J. Mater. Chem. A,
2017, 5, 7811-7815.
Acknowledgements
This work is funded by National Science Foundation of China
(Grant No. 21704030, 51703183, 51873160). We also would
like to thank the Analytical and Testing Center in HUST for
using their facilities.
42. S. Kumar and S. Patil, J. Phys. Chem. C, 2015, 119, 19297-19304.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins