Page 9 of 11
Journal of the American Chemical Society
2005, 127, 9976–9977. (c) Hashmi, A. S. K.; Schaefer, S.; Woelfe, M.;
Am. Chem. Soc. 1981, 103, 6975–6977. (d) Lawson, R. J.; Shapley, J. R.
Intracluster ligand mobility. 3. Triꢀ
2ꢀcarbonylꢀtris(η5ꢀcyclopentadienyl)ꢀ
Diez Gil, C.; Fischer, P.; Laguna, A.; Blanco, M. C.; Gimeno, M. C. Gold‐
Catalyzed Benzylic C–H Activation at Room Temperature. Angew. Chem.
Int. Ed. 2007, 46, 6184–6187. (b) Teles, J. H.; Brode, S.; Chabanas, M.
Cationic Gold(I) Complexes: Highly Efficient Catalysts for the Addition
of Alcohols to Alkynes. Angew. Chem. Int. Ed. 1998, 37, 1415–1418.
(9) (a) Kataoka, Y.; Matsumoto, O.; Tani, K. Stereoselective Addition
of Alcohol to Acetylenecarboxylate Catalyzed by Silver(I) Salt. Chem.
Lett. 1996, 727–728. (b) Pale, P.; Chuche, J. Silver assisted heterocyclizaꢀ
tion of acetylenic compounds. Tetrahedron Lett. 1987, 28, 6447–6448.
(10) (a) Liu, B.; De Brabander, J. K. MetalꢀCatalyzed Regioselective
OxyꢀFunctionalization of Internal Alkynes:ꢁ An Entry into Ketones, Aceꢀ
tals, and Spiroketals. Org. Lett. 2006, 8, 4907–4910. (b) Kadota, I.; Lutete,
L. M.; Shibuya, A.; Yamamoto, Y. Palladium/benzoic acidꢀcatalyzed
hydroalkoxylation of alkynes. Tetrahedron Lett. 2001, 42, 6207–6210. (c)
Hartman, J. W.; Sperry, L. Platinum(II)ꢀcatalyzed addition of alcohols to
alkynes. Tetrahedron Lett. 2004, 45, 3787–3788. (d) Kataoka, Y.; Matsuꢀ
moto, O.; Tani, K. Addition of Methanol to Nonactivated Internal Alkynes
Catalyzed by Dichloro(diphosphine)platinum(II) Complex/Silver Salt
Systems. Organometallics 1996, 15, 5246–5249.
ꢀ
1
2
3
4
5
6
7
8
trianguloꢀtrirhodium. A new, improved preparation and some observations
on its dynamic properties. J. Am. Chem. Soc. 1976, 98, 7433–7435.
(17) For trimethylamineꢀNꢀoxide oxidation of a CO ligand and comꢀ
plexation of the amine to the Fe, see: (a) Pearson, A. J.; Shively, R. J. Iron
Carbonyl Promoted Cyclocarbonylation of 3ꢀHydroxy .alpha.,.omega.ꢀ
Diynes To Give (Cyclopentadienone)Iron Tricarbonyl Complexes. Orꢀ
ganometallics 1994, 13, 578–584. (b) Knölker, H.ꢀJ.; Heber, J.; Mahler, C.
H. Transition MetalꢀDiene Complexes in Organic Synthesis, Part 14.1
Regioselective IronꢀMediated [2+2+1] Cycloadditions of Alkynes and
Carbon Monoxide: Synthesis of Substituted Cyclopentadienones. Synlett
1992, 1002–1003. For selected examples with other metals, see: (c) Koꢀ
elle, U. Aminoxidinduzierte ligandensubstitution an metallcarbonylen. J.
Organomet. Chem. 1977, 133, 53–58. (d) Maher, J. M.; Beatty, R. P.;
Cooper, N. J. Synthesis and properties of the pentacarbonylmetalates of
the group 6 metals. Organometallics 1985, 4, 1354–1361.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(18) For addition of acid to decomplex Me3N from LRu(CO)2(NMe3),
see: Bailey, N. A.; Jassal, V. S.; Vefghi, R.; White, C. The chemistry of
tetraphenylcyclopentadienone complexes of ruthenium and rhodium: the
Xꢀray crystal structure of [Ru{η5ꢀC5Ph4OC(O)CH(OMe)Ph}(CO)2Cl]. J.
Chem. Soc., Dalton Trans. 1987, 2815–2822.
(11) (a) Gabriele, B.; Salerno, G.; Fazio, A.; Pittelli, R. Versatile synꢀ
thesis
of
(Z)ꢀ1ꢀalkylideneꢀ1,3ꢀdihydroisobenzofurans
and
1Hꢀ
isochromenes by palladiumꢀcatalyzed cycloisomerization of 2ꢀ
alkynylbenzyl alcohols. Tetrahedron 2003, 59, 6251–6259. (b) Kadota, I.;
Lutete, L. M.; Shibuya, A.; Yamamoto, Y. Palladium/benzoic acidꢀ
catalyzed hydroalkoxylation of alkynes. Tetrahedron Lett. 2001, 42,
6207–6210. (c) Cacchi, S. J. Organomet. Chem. 1999, 576, 42–64. (d)
Utimoto, K. Palladium catalyzed synthesis of heterocycles. Pure Appl.
Chem. 1983, 55, 1845–1852. (e) Wakabayashi, Y.; Fukuda, Y.; Shiragami,
H.; Utimoto, K.; Nozaki, H. Preparation of furans from alkynols utilizing
palladium catalyzed intramolecular addition of alcohol to acetylene as a
key reaction. Tetrahedron 1985, 41, 3655–3661.
(12) (a) Seo, S. Y.; Yu, X.; Marks, T. J. Intramolecular Hydroalkoxylaꢀ
tion/Cyclization of Alkynyl Alcohols Mediated by Lanthanide Catalysts.
Scope and Reaction Mechanism. J. Am. Chem. Soc. 2009, 131, 263–276.
(b) Yu, X.; Seo, S.; Marks, T. J. Effective, Selective Hydroalkoxylaꢀ
tion/Cyclization of Alkynyl and Allenyl Alcohols Mediated by Lanthanide
Catalysts. J. Am. Chem. Soc. 2007, 129, 7244–7245. (c) Seo, S.; Marks, T.
J. Lanthanide‐Catalyst‐Mediated Tandem Double Intramolecular Hyꢀ
droalkoxylation/Cyclization of Dialkynyl Dialcohols: Scope and Mechaꢀ
nism. Chem. Eur. J. 2010, 16, 5148–5162. (d) Motta, A.; Fragal, I. L;
Marks, T. J. AtomꢀEfficient Carbon−Oxygen Bond Formation Processes.
DFT Analysis of the Intramolecular Hydroalkoxylation/Cyclization of
Alkynyl Alcohols Mediated by Lanthanide Catalysts. Organometallics
2010, 29, 2004–2012.
(13) (a) McDonald, F. E. Alkynol endo‐Cycloisomerizations and Conꢀ
ceptually Related Transformations. Chem. Eur. J. 1999, 5, 3103–3106. (b)
NowrooziꢀIsfahani, T.; Musaev, D. G.; McDonald, F. E.; Morokuma, K.
Density Functional Study of MoꢀCarbonylꢀCatalyzed Alkynol Cycloisomꢀ
erization:ꢁ Comparison with WꢀCatalyzed Reaction. Organometallics
2005, 24, 2921–2929.
(14) Reactions include hydrogenꢀborrowing chemistry, oxidations, and
reductions, see: (a) Conley, B. L.; PenningtonꢀBoggio, M. K.; Boz, E.;
Williams, T. J. Discovery, Applications, and Catalytic Mechanisms of
Shvo’s Catalyst. Chem. Rev. 2010, 110, 2294–2312. (b) Yan, T.; Feringa,
B. L.; Barta, K. Iron catalysed direct alkylation of amines with alcohols.
Nat. Commun. 2014, 5, 5602.
(15) (a) ElꢀSepelgy, O.; Brzozowska, A.; Azofra, L. M.; Jang, Y. K.;
Cavallo, L.; Rueping, M. Experimental and Computational Study of an
Unexpected Iron‐Catalyzed Carboetherification by Cooperative Metal and
Ligand Substrate Interaction and Proton Shuttling. Angew. Chem. Int. Ed.
2017, 56, 14863–14867. (b) Guđmundsson, A.; Gustafson, K. P. J.; Mai,
B. K.; Yang, B.; Himo, F.; Bäckvall, J.ꢀE. Efficient Formation of 2,3ꢀ
Dihydrofurans via IronꢀCatalyzed Cycloisomerization of αꢀAllenols. ACS
Catal. 2018, 8, 12−16. (c) ElꢀSepelgy, O.; Brzozowska, A.; Sklyaruk, J.;
Jang, Y. K.; Zubar, V.; Rueping, M. Cooperative Metal–Ligand Catalyzed
Intramolecular Hydroamination and Hydroalkoxylation of Allenes Using a
Stable Iron Catalyst. Org. Lett. 2018, 20, 696–699.
(16) (a) Albers, M. O.; Coville, N. J. Reagent and catalyst induced subꢀ
stitution reactions of metal carbonyl complexes. Coord. Chem. Rev. 1984,
53, 227–259. (b) Shvo, Y.; Hazum E. A new method for the synthesis of
organic iron carbonyl complexes. J. Chem. Soc., Chem. Commun. 1975,
829–830. (c) Shapley, J. R.; Sievert, A. C.; Churchill, M. R. Wasserman,
H. J. Coordination and coupling of alkylidene groups on a triosmium
(19) During the initial course of this study, we observed formation of
thermodynamic product 3a as well as dimer 4a due to trace acid in the
deuterated solvent, a simple preꢀtreatment with solid K2CO3 followed by
filtration (45 ꢀm syringe filter) to remove inorganic salts provided “acidꢀ
free” solvent which consistently delivered clean formation of 2a.
(20) Compound 3a is thermodynamically preferred by 1.9 kcal/mol
Gibbs Free energy relative to 2a as calculated by DFT using B3LYPꢀ
D3(BJ)/6ꢀ311+G(2d,2p) // B3LYPꢀD3(BJ)/6ꢀ31G(d,p) in the gas phase.
(21) (a) Wrighton, M. Photochemistry of metal carbonyls. Chem. Rev.
1974, 74, 401–430. (b) Stiegman, A. E.; Tyler, D. R. Nonhomolytic cleavꢀ
age pathways in the photochemistry of metalꢀmetalꢀbonded carbonyl
dimers. Acc. Chem. Res. 1984, 17, 61–66. (c) Panesar, R. S.; Dunwoody,
N.; Lees, A. J. WavelengthꢀDependent Photochemistry of W(CO)4(en)
(en = Ethylenediamine):ꢁ Evidence for Distinct Chemical Reactivities
from Singlet and Triplet Ligand Field Excited States. Inorg. Chem. 1998,
37, 1648–1650. (d) Rimmer, R. D.; Richter, H.; Ford, P. C. A Photochemꢀ
ical Precursor for Carbon Monoxide Release in Aerated Aqueous Media.
Inorg. Chem. 2010, 49, 1180ꢀ1185. (e) Suslick, K. S; Goodale, J. W.;
Schubert, P. F.; Wang, H. H. Sonochemistry and sonocatalysis of metal
carbonyls. J. Am. Chem. Soc. 1993, 105, 5781–5785.
(22) These techniques include ReactꢀIR, HPLC, UVꢀvis, etc.
(23) (a) Byers, B. H.; Brown, T. L. The characteristics of M(CO)5 and
related metal carbonyl radicals; abstraction and dissociative and oxidative
addition processes. J. Am. Chem. Soc. 1977, 99, 2527–2532. (b) Stolzenꢀ
berg, A. M.; Muetterties, E. L. Mechanisms of dirhenium decacarbonyl
substitution reactions: crossover experiments with dirheniumꢀ185 decaꢀ
carbonyl and dirheniumꢀ187 decacarbonyl. J. Am. Chem. Soc. 1983, 105,
822–827.
(24) Photomediated loss of CO can be accomplished from Mn2(CO)10
via triplet sensitization, see: Askes, S. H. C.; Reddy, G. U.; Wyrwa, R.;
Bonnet, S.; Schiller, A. Red LightꢀTriggered CO Release from Mn2(CO)10
Using Triplet Sensitization in Polymer Nonwoven Fabrics. J. Am. Chem.
Soc. 2017, 139, 15292–15295.
(25) For examples of nonꢀhomolytic cleavage in metal carbonyl comꢀ
plexes, see: 21b.
(26) (a) Blackmond, D. G. Reaction Progress Kinetic Analysis: A Powꢀ
erful Methodology for Mechanistic Studies of Complex Catalytic Reacꢀ
tions. Angew. Chem. Int. Ed. 2005, 44, 4302−4320. (b) Blackmond, D. G.
Kinetic Profiling of Catalytic Organic Reactions as a Mechanistic Tool. J.
Am. Chem. Soc. 2015, 137, 10852–10866.
(27) Le, C.; Wismer, M. K.; Shi, Z.ꢀC.; Zhang, R.; Conway, D. V.; Li,
G.; Vachal, P.; Davies, I. W.; MacMillan, D. W. C. A General Smallꢀ
Scale Reactor To Enable Standardization and Acceleration of Photocataꢀ
lytic Reactions. ACS Cent. Sci. 2017, 3, 647–653.
(28) The higher photon flux provided by the PennOC m1 photoreactor
compared to the LEDꢀNMR is most likely the reason for being able to
completely activate cat•CO in less than 1 min unlike the NMR time
course in Figure 1 which clearly highlights a longer induction period.
(29) Loss of CO from metal carbonyl is documented in the literature to
result in redꢀshifted λmax and increased molar absorptivity, see Ref. 21a.
(30) Willett, K. L.; Hites, R. A. Chemical Actinometry: Using oꢀ
Nitrobenzaldehyde to Measure Lamp Intensity in Photochemical Experiꢀ
ments. J. Chem. Educ. 2000, 77, 900–902.
cluster framework. Crystal structure of Os3(CO)10(ꢀꢀCO)(ꢀꢀCHSiMe3)J.
ACS Paragon Plus Environment