6
Tetrahedron
ACCEPTED MANUSCRIPT
Othman, M. Tetrahedron Lett. 2013, 54, 5227–5231; (c) Ukhin, L. Y.;
7.0 Hz, 3H), 3.72 (s, br, 1H), 3.84 (dd, 1H, J = 5.4 Hz, J = 11.2
Akopova, A. R.; Bicherov, A. V.; Kuzmina, L. G.; Morkovnik, A. S.;
Borodkin, G. S. Tetrahedron Lett. 2011, 52, 5444–5447; (d) Yu, X.;
Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C. Eur. J. Org. Chem. 2011,
3060–3066; (e) Zhou, Y.; Qian, L.; Zhang, W. Synlett. 2009, 843–847.
7. (a) Han, C.; Shen, Y.; Lu, P.; Wang, Y. Chin. J. Chem. 2013, 31, 182–186.
(b) Marosvölgyi-Haskó, D.; Takács, A.; Riedl, Z.; Kollár, L. Tetrahedron
2011, 67, 1036–1040; (c) Inoue, S.; Shiota, H.; Fukumoto, Y.; Chatani, N.
J. Am. Chem. Soc. 2009, 131, 6898–6899; (d) Grigg, R.; Sridharan, V.;
Shah, M.; Mutton, S.; Kilner, C.; MacPherson, D.; Milner, P. J. Org.
Chem. 2008, 73, 8352–8356; (e) Orito, K.; Miyazawa, M.; Nakamura, T.;
Horibata, A.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.;
Yamazaki, T.; Tokuda, M. J. Org. Chem. 2006, 71, 5951–5958.
8. (a) Ma, W.; Ackermann, L. ACS Catal. 2015, 5, 2822−2825; (b)
Manoharan, R.; Jeganmohan, M. Chem. Commun. 2015, 51, 2929−2932;
(c) Reddy, M. C.; Jeganmohan, M. Org. Lett. 2014, 16, 4866−4869; (d)
Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135,
5364−5367; (e) Yu, Q.; Zhang, N.; Huang, J.; Lu, S.; Zhu, Y.; Yu, X.;
Zhao, K. Chem. Eur. J. 2013, 19, 11184–11188; (f) Zhang, M. J. Chem.
Res. 2013, 606–610; (g) Zhu, C.; Falck, J. R. Tetrahedron 2012, 68,
9192−9199; (h) Li, D. D.; Yuan, T. T.; Wang, G. W. Chem. Commun.
2011, 47, 12789–12791; (i) Shacklady-McAtee, D. M.; Dasgupta, S.;
Watson, M. P. Org. Lett. 2011, 13, 3490−3493; (j) Wang, F.; Song, G.; Li,
X. Org. Lett. 2010, 12, 5430−5433.
Hz, 1H), 4.09 (dd, 1H, J = 4.0 Hz, J = 11.1 Hz, 1H), 4.34 (sept., J
= 6.9 Hz, 1H), 4.63 (t, J = 4.5 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H),
7.46 (t, J = 7.4 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.70 (d, J = 7.5
Hz, 1H); 13C NMR δ 20.2, 21.3, 45.2, 61.5, 63.6, 122.8, 123.2,
128.3, 131.3, 132.9, 143.8, 169.1; IR (νOH) 3369 and (νC=O) 1666
cm−1; HRMS (ESI) calcd for C12H17NO2 [M+H]+: 206.1181,
found: 206.1180.
3.6. Synthesis of 8
A hexane solution of n-BuLi (1.6 M, 1.25 mL, 2 mmol) was
added to the solution of (N-tert-butyl)-o-bromobenzylideneamine
(0.48 g, 2 mmol) in THF (35 mL) at −78 °C under an argon
atmosphere. The resulting mixture was stirred for 30 min, CO
was bubbled into the solution. The CO atmosphere was kept with
a balloon at the exit. After the reaction mixture was stirred at low
temperature for 1 h, I2 (0.51 g, 2 mmol) was added, and the low
temperature bath was removed immediately. The reaction
mixture was continuously stirred overnight at the ambient
temperature. The solvent was removed under reduced pressure,
and the residue was purified by column chromatography on silica
with ethyl acetate/petroleum ether (V/V = 1:4) as the eluent to
give known 3,3′-bis(2-tert-butylisoindol-1-one) (8).20a Yield 56%.
The NMR spectra showed the presence of two stereoisomers (syn
and anti in ca. 1:1 ratio), led by the steric repulsion between
bulky tert-butyl groups as well as tert-butyl groups and benzene
ring.20a These two isomers were isolated by their different
solubility in ethyl acetate/hexane (V/V = 1:5). The syn isomer
was soluble while the anti isomer was insoluble. Data of syn-8:
mp: 215–217 oC; 1H NMR δ 1.83 (s, 18H), 5.37 (s, 2H), 7.11 (t, J
= 7.5 Hz, 2H), 7.20 (t, J = 7.0 Hz, 2H), 7.36 (d, J = 7.6 Hz, 4H);
13C NMR δ 29.4, 56.1, 62.6, 122.4, 122.7, 128.2, 130.9, 134.0,
140.0, 170.6; IR (νC=O) 1680 cm−1. Data of anti-8: mp: 225–227
9. (a) Ball, M.; Boyd, A.; Churchill, G.; Cuthbert, M.; Drew, M.; Fielding, M.;
Ford, G.; Frodsham, L.; Golden, M.; Leslie, K.; Lyons, S.; McKeever-
Abbas, B.; Stark, A.; Tomlin, P. Org. Process Res. Dev. 2012, 16,
741−747; (b) Sarang, P. S.; Yadav, A. A.; Patil, P. S.; Krishna, U. M.;
Trivedi, G. K.; Salunkhe, M. M. Synthesis 2007, 1091–1095;
10. Huntley, R. J.; Gurram, M.; Walker, J. R.; Jenkins, D. M.; Robé, E. J.;
Ahmed, F. Tetrahedron Lett. 2014, 55, 2286–2289.
11. (a) Mamidyala, S. K.; Cooper, M. A. Chem. Commun. 2013, 49, 8407–
8409; (b) Corona, D.; Díaza, E.; Guzmán, A.; Jankowski, C. K.
Spectrochim. Acta, Part A 2005, 61, 2788–2795.
12. (a) Zhang, L.; Kim, J. B.; Jang, D. O. Tetrahedron Lett. 2014, 55, 2654–
2658; (b) Marion, F.; Coulomb, J.; Servais, A.; Courillon, C.; Fensterbank,
L.; Malacria, M. Tetrahedron 2006, 62, 3856–3871; (c) Shen, L.; Hsung,
R. P. Org. Lett. 2005, 7, 775−778; (d) Benati, L.; Leardini, R.; Minozzi,
M.; Nanni, D.; Spagnolo, P.; Strazzari, S.; Zanardi, G. Org. Lett. 2002, 4,
3079−3081.
13. More, V.; Rohlmann, R.; Mancheño, O. G.; Petronzi, C.; Palombi, L.;
Rosa, A. D.; Mola, A. D.; Massa, A. RSC Adv. 2012, 2, 3592–3595.
14. (a) Smith, K.; El-Hiti, G. A.; Hegazy, A. S.; Kariuki, B. Beilstein J. Org.
Chem. 2011, 7, 1219–1227; (b) Smith, K.; El-Hiti, G. A.; Hegazy, A. S.
Chem. Commun. 2010, 46, 2790–2792; (c) Campbell, J. B.; Dedinas, R.
F.; Trumbower-Walsh, S. Synlett. 2010, 3008–3010; (d) Deniau, E.;
Couture, A.; Grandclaudon, P. Tetrahedron: Asymmetry 2008, 19, 2735–
2740; (e) Lamblin, M.; Couture, A.; Deniau, E.; Grandclaudon, P.
Tetrahedron: Asymmetry 2008, 19, 111–123; (f) Kobyashi, K.; Hase, M.;
Hashimoto, K.; Fujita, S.; Tanmatsu, M.; Morikawa, O.; Konishi, H.
Synthesis 2006, 15, 2493–2496; (g) Clayden, J.; Turnbulla, R.; Pinto, I.
Tetrahedron: Asymmetry 2005, 16, 2235–2241; (h) Clayden, J.; Menet, C.
J. Tetrahedron Lett. 2003, 44, 3059–3062; (i) Deniau, E.; Enders, D.
Tetrahedron Lett. 2002, 43, 8055–8058; (j) Campbell, J. B.; Dedinas, R.
F.; Trumbower-Walsh, S. A. J. Org. Chem. 1996, 61, 6205–6211.
15. (a) Cao, R.; Sun, H.; Li, X. Organometallics 2008, 27, 1944–1947; (b)
Funk, J. K.; Yennawar, H.; Sen, A. Helv. Chim. Acta 2006, 89, 1687-1695.
16. Song, Q.; Chen, J.; Jin, X.; Xi, Z. J. Am. Chem. Soc. 2001, 123, 10419–
10420.
17. Seyferth, D.; Weinstein, R.M.; Hui, R. C.; Wang, W. L.; Archer, C. M. J.
Org. Chem. 1992, 57, 5620–5629.
18. Xie, Y. –F.; Yu, Y.; Fan, Z. –J.; Ma, L.; Mi, N.; Tang, L. –F. Appl.
Organometal. Chem. 2010, 24, 1–7.
19. (a) Zhao, D.; Gao, W.; Mu, Y.; Ye, L. Chem. Eur. J. 2010, 16, 4394–4401;
(b) Vila, J. M.; Pereira, T.; Ortigueira, J. M.; Amoedo, A.; Graña, M.;
Alberdi, G.; López-Torres, M.; Fernández, A. J. Organomet. Chem. 2002,
663, 239–248.
20. (a) Takaya, J.; Sangu, K.; Iwasawa, N. Angew. Chem. Int. Ed. 2009, 48,
7090–7093; (b) López-Valdez, G.; Olguín-Uride, S.; Miranda, L. D.
Tetrahedron Lett. 2007, 48, 8285–8289.
oC; H NMR δ 1.11 (s, 9H), 1.78 (s, 9H), 5.23 (s, 1H), 5.56 (s,
1
1H), 6.07 (s, 1H), 7.27–7.90 (m, 8H); 13C NMR δ 28.6, 29.1, 55.1,
57.2, 63.6, 66.0, 122.0, 122.6, 123.4, 123.6, 128.8, 129.3, 131.8,
132.3, 133.2, 134.2, 141.2, 144.2, 169.8, 171.5; IR (νC=O) 1682
cm−1. HRMS (ESI) calcd for C24H29N2O2 [M+H]+: 377.2229,
found: 377.2227.
Acknowledgments
This work is supported by the National Natural Science
Foundation of China (No. 21372124).
References
1. (a) Speck, K.; Magauer, T. Beilstein J. Org. Chem. 2013, 9, 2048–2078; (b)
Watson, A. F.; Liu, J.; Bennaceur, K.; Drummond, C. J.; Endicott, J. A.;
Golding, B. T.; Griffin, R. J.; Haggerty, K.; Lu, X.; McDonnell, J. M.;
Newell, D. R.; Noble, M. E. M.; Revill, C. H.; Riedinger, C.; Xu, Q.;
Zhao, Y.; Lunec, J.; Hardcastle, I. R. Bioorg. Med. Chem. Lett. 2011, 21,
5916–5919; (c) Zhao, X. Z.; Maddali, K.; Marchand, C.; Pommier, Y.;
Burke, Jr. T. R. Bioorg. Med. Chem. 2009, 17, 5318–5324; (d) Lee, H. J.;
Lim, S. J.; Oh, S. J.; Moon, D. H.; Kim, D. J.; Tae, J.; Yoo, K. H. Bioorg.
Med. Chem. Lett. 2008, 18, 1628–1631; (e) Lübbers, T.; Angehrn, P.;
Gmünder, H.; Herzig, S. Bioorg. Med. Chem. Lett. 2007, 17, 4708–4714;
(f) Hamprecht, D.; Micheli, F.; Tedesco, G.; Checchia, A.; Donati, D.;
Petrone, M.; Terreni, S.; Wood, M. Bioorg. Med. Chem. Lett. 2007, 17,
428–433.
2. (a) Csende, F.; Stajer, G. Curr. Org. Chem. 2005, 9, 1261–1276; (b) Stajer,
G.; Csende, F. Curr. Org. Chem. 2005, 9, 1277–1286.
21. Wertjes, W. C.; Wolfe, L. C.; Waller, P. J.; Kalyani, D. Org. Lett. 2013,
15, 5986–5989.
22. Kumar, V.; Sharma, S.; Sharma, U.; Singh, B.; Kumar, N. Green Chem.
2012, 14, 3410–3414.
23. (a) Bhakuni, B. S.; Yadav, A.; Kumar, S.; Patel, S.; Sharma, S.; Kumar, S.
J. Org. Chem. 2014, 79, 2944–2954; (b) Anderson, P. S.; Christy, M. E.;
Colton, C. D.; Shepard, K. L. J. Org. Chem. 1978, 43, 3719–3723.
24. Anderson, P. S.; Christy, M. E.; Colton, C. D.; Halczenko, W.; Ponticello,
G. S.; Shepard, K. L. J. Org. Chem. 1979, 44, 1519–1533.
3. Hunter, R.; Richards, P. Org. Biomol. Chem. 2003, 1, 2348–2356.
4. Enders, D.; Braig, V.; Raabe, G. Can. J. Chem. 2001, 79, 1528–1535.
5. (a) Kise, N.; Kawano, Y.; Sakurai, T. J. Org. Chem. 2013, 78,
12453−12459; (b) Das, S.; Addis, D.; Knöke, L. R.; Bentrup, U.; Junge,
K.; Brückner, A.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 9180 –9184;
(c) Guo, Z.; Schultz, A. G. J. Org. Chem. 2001, 66, 2154−2157; (d)
Deniau, E.; Enders, D. Tetrahedron Lett. 2000, 41, 2347–2350
6. (a) Ali, I. A. I. Monatsh Chem. 2014, 145, 803−810; (b) Pesquet, A.;