Syn th esis of Ma cr ocyclic P ep tid e
An a logu es of P r otea som e In h ibitor
TMC-95A
Alexandra Berthelot, Sandrine Piguel,
Gwennae¨l Le Dour, and J oe¨lle Vidal*
Institut de chimie de Rennes, Synthe`se et e´lectrosynthe`se
organiques, UMR 6510, Universite´ de Rennes I, Campus de
Beaulieu, F 35042 Rennes Cedex, France
joelle.vidal@univ-rennes1.fr
Received August 28, 2003
F IGURE 1. Structure of TMC-95A, -B, -C, and -D.
of action.9 The proteasome10 is a multicatalytic protease
which plays a major role in intracellular processes and
its inhibition represents a promising target for drug
development.11,12
TMC-95A has stimulated a great interest in the
scientific community mainly as the result of the impor-
tance of proteasome inhibition but also for its synthetic
challenge. In fact, during the course of our work, several
groups developed either routes to the unusual highly
oxidized L-tryptophan fragment13 or strategies based on
macrolactamization to perform the ring closure of TMC-
95A.14 In 2002, Danishefsky et al. published the first total
synthesis of TMC-95A15,16 while Moroder et al. described
the synthesis of the first analogue.17
As starting point of our work, we decided to focus on
the synthesis of TMC-95A analogues in order to study
their structure-activity relationship. Recently, a crystal
structure showed that TMC-95A was bound to the
trypsin-like site of proteasome by a network of five
hydrogen bonds involving four centers of the TMC-95A
peptide backbone and the C-23 carbonyl of the oxindole.18
Moreover, the two hydroxyl groups at C-6 and C-7 as well
as the ketoamide side chain (C-34 and C-35) do not seem
to be essential for recognition. However the interactions
between TMC-95A and the other active sites still remain
to be established. Therefore, we based the design of TMC-
Abstr a ct: The synthesis of three constrained macrocyclic
peptide analogues 1 of TMC-95A as potential proteasome
inhibitors is described. The key step involves a Ni(0)-
mediated macrocyclization of tripeptides 2 bearing haloge-
nated aromatic side chains for the formation of the biaryl
junction. In addition, an enantioselective preparation of L-7-
bromotryptophan methyl ester 3 using a Corey-O’Donnell
alkylation of the glycine benzophenone imine was achieved
in good overall yield with very high ee (>85%) on
multigram scale.
a
TMC-95A and its diasteromers TMC-95B, -C, and -D,
novel 17-membered macrocyclic peptides, have been
recently isolated from the fermentation broth of Ap-
iospora montagnei Sacc. TC10931 (Figure 1). They con-
tain L-tyrosine, L-asparagine, a highly oxidized L-tryp-
tophan, a C-terminal (Z)-1-propenylamine, an N-terminal
3-methyl-2-oxopentanoyl moiety, and a phenol-oxindole
ring junction. Such a biaryl link is found only in the
natural products neuroprotectin2 or complestatins A and
B.3 The related phenyl-indole ring attachment encoun-
tered in natural products such as chloropeptin,4 kista-
micin,5 complestatin,6 SCH 212394,7 and diazonamide8
is more widespread.
TMC-95A was found to be a very potent, reversible,
and noncovalent inhibitor of the peptidase activities
(chymotrypsin-like, trypsin-like, and caspase-like) of the
proteasome 20S, the last being an unprecedented mode
(9) For reviews on proteasome inhibitors, see: Kisselev, A. F.;
Goldberg, A. L. Chem. Biol. 2001, 8, 739-758; Myung, J .; Kim, K. B.;
Crews, C. M. Med. Res. Rev. 2001, 21, 245-273.
(10) For review on proteasome, see: Groll, M.; Huber, R. Int. J .
Biochem. Cell Biol. 2003, 35, 606-616 and references therein.
(11) Adams, J . Drug Discovery Today 2003, 8, 307-315.
(12) Recently, proteasome inhibitor VELCADE (PS-341 or bort-
ezomib) received FDA approval in the treatment of multiple myeloma,
(13) (a) Ma, D.; Wu, Q. Tetrahedron Lett. 2000, 41, 9089-9093. (b)
Albrecht, B. K.; Williams, R. M. Tetrahedron Lett. 2001, 42, 2755-
2757. (c) Ma, D.; Wu, Q. Tetrahedron Lett. 2001, 42, 5279-5281. (d)
Inoue, M.; Furuyama, H.; Sakazaki, H.; Hirama, M. Org. Lett. 2001,
3, 2863-2865.
(1) (a) Koguchi, Y.; Kohno, J .; Nishio, M.; Takahashi, K.; Okuda,
T.; Ohnuki, T.; Komatsubara, S. J . Antibiot. 2000, 53, 105-109. (b)
Kohno, J .; Koguchi, Y.; Nishio, M.; Nakao, K.; Kuroda, M.; Shimizu,
R.; Ohnuki, T.; Komatsubara, S. J . Org. Chem. 2000, 65, 990-995.
(2) Kobayashi, H.; Shin-Ya, K.; Furihata, K.; Najai, K.; Suzuki, K.
I.; Hayakawa, Y.; Seto, H.; Yun, B. S.; Ryoo, I. J .; Kim, J . S.; Kim, C.
J .; Yoo, I. D. J . Antibiot. 2001, 54, 1019-1024.
(3) Singh, S. B.; J ayasuriya, H.; Salituro, G. M.; Zink, D. L.; Shafiee,
A.; Heimbuch, B.; Silverman, K. C.; Lingham, R. B.; Genilloud, O.;
Teran, A.; Vilella, D.; Felock, P.; Hazuda D. J . Nat. Prod. 2001, 64,
874-882.
(4) Matsuzaki, K.; Ikeda, H.; Ogino, T.; Matsumoto, A.; Woodruff,
H. B.; Tanaka, H.; Omura, S. J . Antibiot. 1994, 47, 1173-1174.
(5) (a) Naruse, N.; Tenmyo, O.; Kobaru, S., Hatori, M.; Tomika, K.;
Hamagishi, Y.; Oki, T. J . Antibiot. 1993, 46, 1804-1811. (b) Naruse,
N.; Oka, M.; Konishi, M.; Oki, T. J . Antibiot. 1993, 46, 1812-1818.
(6) Seto, H.; Fujioka, T.; Furihata, K.; Kaneko, I.; Takahashi, S.
Tetrahedron Lett. 1989, 30, 4987-4990.
(7) Hedge, V. R.; Puar, M. S.; Patel, M.; Gullo, V. P.; Pramanick,
B.; J enh C. H. Tetrahedron Lett. 2002, 43, 5339-5341.
(8) Lindquist, N.; Fenical, W.; Van Duyne, G. D.; Clardy, J . J . Am.
Chem. Soc. 1991, 113, 2303-2304.
(14) (a) Lin, S.; Danishefsky, S. J . Angew. Chem., Int. Ed. 2001, 40,
1967-1970. (b) Albrecht, B. K.; Williams, R. M. Org. Lett. 2003, 5,
197-200.
(15) Lin, S.; Danishefsky, S. J . Angew. Chem., Int. Ed. 2002, 41,
512-515.
(16) During the preparation of our manuscript, a second total
synthesis of TMC-95A was published. Inoue, M.; Sakazaki, H.;
Furuyama, H.; Hirama, M. Angew. Chem., Int. Ed. 2003, 42, 2654-
2657.
(17) Kaiser, M.; Groll, M.; Renner, C.; Huber, R.; Moroder, L. Angew.
Chem., Int. Ed. 2002, 41, 780-783.
(18) Groll, M.; Koguchi, Y.; Huber, R.; Kohno, J . J . Mol. Biol. 2001,
311, 543-548.
10.1021/jo035256c CCC: $25.00 © 2003 American Chemical Society
Published on Web 11/11/2003
J . Org. Chem. 2003, 68, 9835-9838
9835