Journal of the American Chemical Society
Page 4 of 6
towards Control of Particle Size and Stability. J. Nanopart. Res. 2016, 18,
133.
Zhi-Jian Zhao: 0000-0002-8856-5078
1
2
3
(17) Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E.,
Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Trans.
2015, 44, 17883-17905.
Notes
The authors declare no competing financial interests.
(18) Hempelmann, H. N. R., Nanocrystalline Copper by Pulsed
Electrodeposition: The Effects of Organic Additives, Bath Temperature,
and pH. J. Phys. Chem. 1996, 100, 19525-19532.
4
5
6
7
8
9
ACKNOWLEDGMENT
(19) Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.;
Oh, H. S.; Min, B. K.; Hwang, Y. J., Electrochemical Fragmentation of
Cu2O Nanoparticles Enhancing Selective C–C Coupling from CO2
Reduction Reaction. J. Am. Chem. Soc. 2019, 141, 4624-4633.
(20) Grosse, P.; Gao, D.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan
Cuenya, B., Dynamic Changes in the Structure, Chemical State and
Catalytic Selectivity of Cu Nanocubes during CO2 Electroreduction: Size
and Support Effects. Angew. Chem. Int. Ed. 2018, 57, 6192-6197.
(21) Zhuang, T. T.; Pang, Y. J.; Liang, Z. Q.; Wang, Z. Y.; Li, Y.; Tan, C.
S.; Li, J.; Dinh, C. T.; De Luna, P.; Hsieh, P. L.; Burdyny, T.; Li, H. H.;
Liu, M. X.; Wang, Y. H.; Li, F. W.; Proppe, A.; Johnston, A.; Nam, D. H.;
Wu, Z. Y.; Zheng, Y. R.; Ip, A. H.; Tan, H. R.; Chen, L. J.; Yu, S. H.;
Kelley, S. O.; Sinton, D.; Sargent, E. H., Copper Nanocavities Confine
Intermediates for Efficient Electrosynthesis of C3 Alcohol Fuels from
Carbon Monoxide. Nat. Catal. 2018, 1, 946-951.
(22) Lum, Y.; Ager, J. W., Evidence for Product-Specific Active Sites on
Oxide-Derived Cu Catalysts for Electrochemical CO2 Reduction. Nat.
Catal. 2018, 2, 86-93.
(23) Hahn, C.; Hatsukade, T.; Kim, Y. G.; Vailionis, A.; Baricuatro, J. H.;
Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F., Engineering
Cu Surfaces for the Electrocatalytic Conversion of CO2: Controlling
Selectivity toward Oxygenates and Hydrocarbons. Proc. Natl. Acad.
Sci.U. S. A. 2017, 114, 5918-5923.
We acknowledge the National Key R&D Program of China
(2016YFB0600901), the National Natural Science Foundation
of China (21525626, U1662111, 21722608, 51861125104), the
Natural Science Foundation of Tianjin City (18JCJQJC47500)
and the Program of Introducing Talents of Discipline to
Universities (B06006) for financial support.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de
Lagemaat, J.; Kelley, S. O.; Sargent, E. H., What Should We Make with
CO2 and How Can We Make It? Joule 2018, 2, 825-832.
(2) Huan, T. N.; Dalla Corte, D. A.; Lamaison, S.; Karapinar, D.; Lutz, L.;
Menguy, N.; Foldyna, M.; Turren-Cruz, S. H.; Hagfeldt, A.; Bella, F.;
Fontecave, M.; Mougel, V., Low-Cost High-Efficiency System for Solar-
Driven Conversion of CO2 to Hydrocarbons. Proc. Natl. Acad. Sci.U. S. A.
2019, 116, 9735-9740.
(3) Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z., Surface and
Interface Engineering in Copper-Based Bimetallic Materials for Selective
CO2 Electroreduction. Chem 2018, 4, 1809-1831.
(4) Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J.,
Electrochemical
CO2
Reduction:
A
Classification
Problem.
(24) Karimzadeh, I.; Aghazadeh, M.; Ganjali, M. R.; Norouzi, P.;
Shirvani-Arani, S.; Doroudi, T.; Kolivand, P. H.; Marashi, S. A.;
Chemphyschem 2017, 18, 3266-3273.
(5) Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang,
L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T.;
Hahn, C.; Jaramillo, T. F., Improved CO2 Reduction Activity towards C2+
Alcohols on a Tandem Gold on Copper Electrocatalyst. Nat. Catal. 2018,
1, 764-771.
(6) Scholten, F.; Sinev, I.; Bernal, M.; Roldan Cuenya, B., Plasma-
Modified Dendritic Cu Catalyst for CO2 Electroreduction. ACS Catal
2019, 9, 5496-5502.
(7) Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F., New Insights
into the Electrochemical Reduction of Carbon Dioxide on Metallic Copper
Surfaces. Energy Environ. Sci. 2012, 5, 7050-7059.
(8) Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W., Grain-Boundary-
Dependent CO2 Electroreduction Activity. J. Am. Chem. Soc. 2015, 137,
4606-4609.
(9) Liu, S.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. D.,
Efficient Electrochemical Reduction of CO2 to HCOOH over Sub-2 nm
SnO2 Quantum Wires with Exposed Grain Boundaries. Angew. Chem. Int.
Ed. 2019, 58, 8499-8503.
(10) Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W., A Direct Grain-
Boundary-Activity Correlation for CO Electroreduction on Cu
Nanoparticles. ACS Cent. Sci. 2016, 2, 169-174.
(11) Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.;
McKeown, J. T.; Kumar, M.; Stephens, I. E.; Kanan, M. W.;
Chorkendorff, I., Probing the Active Surface Sites for CO Reduction on
Oxide-Derived Copper Electrocatalysts. J. Am. Chem. Soc. 2015, 137,
9808-9811.
(12) Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.;
Yeo, B. S., Selective Electrochemical Reduction of Carbon Dioxide to
Ethylene and Ethanol on Copper(I) Oxide Catalysts. ACS Catal. 2015, 5,
2814-2821.
(13) Li, C. W.; Ciston, J.; Kanan, M. W., Electroreduction of Carbon
Monoxide to Liquid Fuel on Oxide-Derived Nanocrystalline Copper.
Nature 2014, 508, 504-507.
(14) Kim, J.; Choi, W.; Park, J. W.; Kim, C.; Kim, M.; Song, H.,
Branched Copper Oxide Nanoparticles Induce Highly Selective Ethylene
Production by Electrochemical Carbon Dioxide Reduction. J. Am. Chem.
Soc. 2019, 141, 6986-6994.
(15) Chen, Z.; Chang, J. W.; Balasanthiran, C.; Milner, S. T.; Rioux, R.
M., Anisotropic Growth of Silver Nanoparticles is Kinetically Controlled
by Polyvinylpyrrolidone Binding. J. Am. Chem. Soc. 2019, 141, 4328-
4337.
(16) Granata, G.; Yamaoka, T.; Pagnanelli, F.; Fuwa, A., Study of the
Synthesis of Copper Nanoparticles: the Role of Capping and Kinetic
Gharailou, D.,
Poly(vinylpyrrolidone)
A
Novel Method for Preparation of Bare and
Coated Superparamagnetic Iron Oxide
Nanoparticles for Biomedical Applications. Mater. Lett. 2016, 179, 5-8.
(25) Arihara, K.; Kitamura, F.; Ohsaka, T.; Tokuda, K., Characterization
of the Adsorption State of Carbonate Ions at the Au(111) Electrode
Surface using In Situ IRAS. J. Electroanal. Chem. 2001, 510, 128-135.
(26) Heyes, J.; Dunwell, M.; Xu, B., CO2 Reduction on Cu at Low
Overpotentials with Surface-Enhanced in Situ Spectroscopy. J. Phys.
Chem. C 2016, 120, 17334-17341.
(27) Gunathunge, C. M.; Ovalle, V. J.; Li, Y. W.; Janik, M. J.; Waegele,
M. M., Existence of an Electrochemically Inert CO Population on Cu
Electrodes in Alkaline pH. ACS Catal. 2018, 8, 7507-7516.
(28) Malkani, A. S.; Dunwell, M.; Xu, B., Operando Spectroscopic
Investigations of Copper and Oxide-Derived Copper Catalysts for
Electrochemical CO Reduction. ACS Catal. 2018, 9, 474-478.
(29) Lee, S.; Lee, J., Ethylene Selectivity in CO Electroreduction when
using Cu Oxides: An In Situ ATR-SEIRAS Study. ChemElectroChem
2018, 5, 558-564.
(30) Zhu, S. Q.; Li, T. H.; Cai, W. B.; Shao, M. H., CO2 Electrochemical
Reduction as Probed through Infrared Spectroscopy. ACS Energy Lett.
2019, 4, 682-689.
(31) Gunathunge, C. M.; Ovalle, V. J.; Waegele, M. M., Probing
Promoting Effects of Alkali Cations on the Reduction of CO at the
Aqueous Electrolyte/Copper Interface. Phys. Chem. Chem. Phys. 2017,
19, 30166-30172.
(32) Persson, B. N. J.; Ryberg, R., Vibrational Interaction between
Molecules Adsorbed on a Metal Surface: The Dipole-Dipole Interaction.
Phys. Rev. B 1981, 24, 6954-6970.
(33) Gunathunge, C. M.; Li, X.; Li, J. Y.; Hicks, R. P.; Ovalle, V. J.;
Waegele, M. M., Spectroscopic Observation of Reversible Surface
Reconstruction of Copper Electrodes under CO2 Reduction. J. Phys.
Chem. C 2017, 121, 12337-12344.
(34) Kim, K. S.; Kim, W. J.; Lim, H. K.; Lee, E. K.; Kim, H., Tuned
Chemical Bonding Ability of Au at Grain Boundaries for Enhanced
Electrochemical CO2 Reduction. ACS Catal. 2016, 6, 4443-4448.
(35) Goodpaster, J. D.; Bell, A. T.; Head-Gordon, M., Identification of
Possible Pathways for C–C Bond Formation during Electrochemical
Reduction of CO2: New Theoretical Insights from an Improved
Electrochemical Model. J. Phys. Chem. Lett. 2016, 7, 1471-1477.
(36) Calle-Vallejo, F.; Koper, M. T., Theoretical Considerations on the
Electroreduction of CO to C2 species on Cu(100) electrodes. Angew.
Chem. Int. Ed. 2013, 52, 7282-7285.
ACS Paragon Plus Environment