T. Hosokawa et al. / Tetrahedron Letters 43 (2002) 9323–9325
9325
In summary, we have found that the Heck reaction in
the presence of O2 is accompanied by an oxidative
dealkylation of tertiary amines usually employed as the
acid scavenger. The catalysis for arylation is operative
even in the presence of O2. Although the present study
has not focused on the synthetic utility, our finding may
provide a cue for the nature of Pd–H species.
5. For arylation of alkene bearing allylic alcohol and a,b-
unsaturated ester moieties, see: (a) Basavaiah, D.;
Muthukumaran, K. Tetrahedron 1998, 54, 4943–4948; (b)
Hosokawa, T.; Sugafuji, T.; Yamanaka, T.; Murahashi,
S.-I. J. Organomet. Chem. 1994, 470, 253–256.
6. Into a mixture of PdCl2(MeCN)2 (12.9 mg, 0.05 mmol),
PhI (225 mg, 1.1 mmol) and NEt3 (202 mg, 2.0 mmol) in
DMF (5 mL) was added 4 (116 mg, 1.0 mmol). After the
solution was stirred under argon at 80°C for 6 h, the
resulting mixture was diluted with Et2O and washed with
brine. The organic layer was dried over anhydrous
Na2SO4. Filtration followed by evaporation of the solvent
gave oily material (297 mg) containing 5 in 62% NMR
yield. The product 5 was purified by a short column
chromatography of SiO2. Compound 5 is in keto-enol
equilibrium. 1H NMR (270 MHz, CDCl3): l (keto form)
9.74 (d, J=1.9 Hz, 1H, CHO), 7.23 (m, 5H, C6H5), 3.72
(s, 3H, CO2CH3), 3.65 (ddd, J=7.8, 6.7, 1.9 Hz, 1H,
CH-CHO), 3.22 (d, J=6.7 Hz, 1H, C6H5CH2), 3.20 (d,
J=7.8 Hz, 1H, C6H5CH2); l (enol form) 11.47 (d, J=12.7
Hz, 1H, CHOH), 7.23 (m, 5H, C6H5), 7.04 (dt, J=12.7,
0.9 Hz, 1H, CHOH), 3.72 (s, 3H, CO2CH3), 3.41 (broad s,
2H, C6H5CH2); 13C NMR (68 MHz, CDCl3): l 196.1,
172.5, 161.9, 140.0, 137.4, 128.8, 128.7, 128.4, 128.3, 126,9,
126.2, 104.4, 60.2, 52.4, 51.5, 33.1, 32.2; IR (neat): w 3400
(O-H), 2950, 1725 (CꢀO), 1670, 1610, 1495, 1445, 1395
(C-H), 1335 (O-H), 1210, 1200, 1175 (C-O), 1095, 825
(CꢀCH), 750 (Ph-), 700 (Ph-), 475 cm−1, MS (70 eV): m/z
192 (M+), 163 (M+−CHO), 104 (PhCH2CH-), 91 (PhCH2-).
7. The configuration of enamine 6 is determined to be E by
nuclear Overhauser effect (NOE) in NMR.
8. The reaction was performed under oxygen (balloon) by
using 4 (232 mg, 2.0 mmol), PhI (448 mg, 0.25 mL, 2.2
mmol), NEt3 (404 mg, 0.56 mL, 4.0 mmol) and
PdCl2(MeCN)2 (26.0 mg, 0.1 mmol) in DMF (10 mL).
After the solution was stirred at 80°C for 6 h, usual
work-up gave oily material (550 mg) containing 6 in 57%
NMR yield. The product 6 was purified by a short column
chromatography of Al2O3 (12 g). 1H NMR (270 MHz,
CDCl3): l 7.62 (s, 1H, CꢀCH-N), 7.19 (m, 5H, C6H5-),
3.78 (s, 2H, C6H5-CH2), 3.65 (s, 3H, COOCH3), 3.18 (q,
J=7.2 Hz, 4H, NCH2CH3), 1.12 (t, J=7.2 Hz, 6H,
NCH2CH3); 13C NMR (68 MHz, CDCl3): l 171.6 (CꢀO),
148.3 (CꢀCHN), 142.6 (C6H5-), 128.2 (C6H5-), 127.5
(C6H5-), 125.5 (C6H5-), 93.0 (C-COOCH3), 51.0 (OCH3),
47.0 (N-CH2-), 30.9 (C6H5-CH2), 14.8 (NCH2CH3); IR
(neat): w 2975, 2945, 1680 (CꢀO), 1615 (CꢀC), 1495, 1450,
1430, 1380, 1360, 1345, 1315, 1260, 1135, 1085 (C-O-C),
735 (Ph-), 700 (Ph-), 480 cm−1; MS (70 eV): m/z 247 (M+),
232 (M+−Me), 218 (M+−Et), 156 (M+−PhCH2), 131
(PhCH2CCO-), 115 (PhCH2CC-); HRMS calcd for
C15H21NO2 247.1572. Found: 247.1613.
References
1. (a) Heck, R. F. Palladium Reagents in Organic Synthesis;
Academic Press: New York, 1985; pp. 276–299; (b) Heck,
R. F. In Comprehensive Organic Synthesis; Trost, B. M.;
Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 4,
Chapter 4; (c) Tsuji, J. Palladium Reagents and Catalysts,
Innovation in Organic Synthesis; John Wiley & Sons: New
York, 1995; pp. 125–167; (d) Overman, L. E. Pure Appl.
Chem. 1994, 66, 1423; (e) De Meijere, A.; Meyer, F. E.
Angew. Chem., Int. Ed. Engl. 1994, 33, 2379–2411; (f)
Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100,
3009–3069; (g) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc.
2001, 123, 6989–7000 and references cited therein.
2. (a) Hosokawa, T.; Murahashi, S.-I. Acc. Chem. Res. 1990,
23, 49–54; (b) Nishimura, T.; Onoue, T.; Ohe, K.;
Uemura, S. J. Org. Chem. 1999, 64, 6750–6755; (c)
Nishimura, T.; Kakiuchi, N.; Onoue, T.; Ohe, K.;
Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 1915–
1918; (d) Kakiuchi, K.; Nishimura, T.; Inoue, M.;
Uemura, S. Bull. Chem. Soc. Jpn. 2001, 74, 165–172; (e)
Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A.
J. Am. Chem. Soc. 2001, 123, 7188–7189; (f) Steinhoff, B.
A.; Fix, S. R.; Stahl, S. S. J. Am. Chem. Soc. 2002, 124,
766–767.
3. Recently, robust palladium catalysts, which are not sensi-
tive to air and moisture, has been developed in the Heck
reaction, see: (a) Feuerstein, M.; Doucet, H.; Santelli, M.
J. Org. Chem. 2001, 66, 5923–5925; (b) Peris, E.; Loch, J.
A.; Mata, J.; Crabtree, R. H. Chem. Commun. 2001,
201–202; (c) Gai, X.; Grigg, R.; Ramzan, M. I.; Sridharan,
V.; Collard, S.; Muir, J. E. Chem. Commun. 2000, 2053–
2054; (d) Bergbreiter, D. E.; Osburn, P. L.; Liu, Y.-S. J.
Am. Chem. Soc. 1999, 121, 9531–9538; (e) Ohff, M.; Ohff,
A.; van der Boom, M. E; Milstein, D. J. Am. Chem. Soc.
1997, 119, 11687–11688. Furthermore, palladium-cata-
lyzed arylation of alkenes with arenediazonium salts under
an aerobic condition has been reported, see: Brunner, H.;
Le Consturier de Courcy, N.; Genet, J.-P. Tetrahedron
Lett. 1999, 40, 4815–4818. However, to our knowledge,
there has been no precedent that O2 acts as an oxidant in
the Heck reaction.
4. (a) McCrindle, R.; Ferguson, G.; Arsenault, G. J.;
McAlees, A. J. J. Chem. Soc., Chem. Commun. 1983,
571–572; (b) McCrindle, R.; Ferguson, G.; Arsenault, G.
J.; McAlees, A. J.; Stephenson, D. K. J. Chem. Res. (S)
1984, 360–361.
9. For related reactions, see: (a) Trzeciak, A. M.; Ciunik, Z.;
Ziolkowski, J. J. Organometallics 2002, 21, 132–137; (b)
Bharathi, P.; Periasamy, M. Org. Lett. 1999, 1, 857–859.