Extended Hypervalent 5c–6e C2Z2O Interactions
FULL PAPER
1–6, structure B of 7–12, and structure A of 7, 8, and 10 at the density
functional theory (DFT) level of the Becke three-parameter hybrid func-
tional combined with the Lee–Yang–Parr correlation functional
(B3LYP). AIM analysis was performed with the AIM2000 program[20]
after optimization of the structures.
metallics 2002, 21, 884–892; g) J. R. Anacona, J. Gomez, D. Lorono,
Acta Crystallogr., Sect. C 2003, 59, o277–o280; h) G. Mugesh, H. B.
Singh, R. J. Butcher, Eur. J. Inorg. Chem. 1999, 1229–1236; i) R.
Kaur, H. B. Singh, R. P. Patel, J. Chem. Soc., Dalton Trans. 1996,
2719–2726; j) G. Mugesh, H. B. Singh, R. J. Butcher, J. Organomet.
Chem. 1999, 577, 243–248; see also, k) D. Shimizu, N. Takeda, N.
Tokitoh, Chem. Commun. 2006, 177–178.
[10] a) Atoms in Molecules. A Quantum Theory (Ed.: R. F. W. Bader),
Oxford University Press, Oxford, 1990; b) R. F. W. Bader, T. S. Slee,
D. Cremer, E. Kraka, J. Am. Chem. Soc. 1983, 105, 5061–5068;
c) R. F. W. Bader, Chem. Rev. 1991, 91, 893–926; d) R. F. W. Bader,
J. Phys. Chem. A 1998, 102, 7314–7323; e) F. W. Biegler-Kçnig,
R. F. W. Bader, T. H. Tang, J. Comput. Chem. 1982, 3, 317–328;
f) R. F. W. Bader, Acc. Chem. Res. 1985, 18, 9–15; g) T. H. Tang,
R. F. W. Bader, P. MacDougall, Inorg. Chem. 1985, 24, 2047–2053;
h) F. Biegler-Kçnig, J. Schçnbohm, D. Bayles, J. Comput. Chem.
2001, 22, 545–559; i) F. Biegler-Kçnig, J. Schçnbohm, J. Comput.
Chem. 2002, 23, 1489–1494.
[11] J. Molina, J. A. Dobado, Theor. Chem. Acc. 2001, 105, 328–337.
[12] J. A. Dobado, H. Martinez-Garcia, J. Molina, M. R. Sundberg, J.
Am. Chem. Soc. 2000, 122, 1144–1149.
[13] a) M. Yamashita, Y. Yamamoto, K.-y. Akiba, D. Hashizume, F. Iwa-
saki, N. Takagi, S. Nagase, J. Am. Chem. Soc. 2005, 127, 4354–4371;
b) Y. Yamamoto, K.-y. Akiba, Yuki Gosei Kagaku Kyokaishi 2004,
62, 1128–1137.
Acknowledgements
This work was partially supported by a Grant-in-Aid for Scientific Re-
search (No. 16550038) from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan.
[1] a) J. C. Martin, M. M. Chau, J. Am. Chem. Soc. 1974, 96, 3319–3321;
b) S. Alvarez, F. Mota, J. Novoa, J. Am. Chem. Soc. 1987, 109,
6586–6591; c) W. B. Farnham, D. A. Dixon, J. C. Calabrese, J. Am.
Chem. Soc. 1988, 110, 8453–8461; d) W. Nakanishi, “Hypervalent
Chalcogen Compounds” in Handbook of Chalcogen Chemistry: New
Perspectives in Sulfur, Selenium and Tellurium (Ed.: F. A. Devillano-
va), Royal Society of Chemistry, Cambridge, Chapter 10.3, 2006, in
press.
[2] a) W. Nakanishi, S. Hayashi, S. Toyota, Chem. Commun. 1996, 371–
372; b) W. Nakanishi, S. Hayashi, S. Toyota, J. Org. Chem. 1998, 63,
8790–8800; c) W. Nakanishi, S. Hayashi, T. Arai, Chem. Commun.
2002, 2416–2417.
[3] a) W. Nakanishi, S. Hayashi, N. Itoh, Chem. Commun. 2003, 124–
125; b) W. Nakanishi, S. Hayashi, N. Itoh, J. Org. Chem. 2004, 69,
1676–1684; c) W. Nakanishi, S. Hayashi, T. Furuta, N. Itoh, Y. Nishi-
na, M. Yamashita, Y. Yamamoto, Phosphorus Sulfur Silicon Relat.
Elem. 2005, 180, 1351–1355.
[14] S. K. Ignatov, N. H. Rees, B. R. Tyrrell, S. R. Dubberley, A. G. Razu-
vaev, P. Mountford, G. I. Nikonov, Chem. Eur. J. 2004, 10, 4991–
4999.
[15] H. M. Muchall, ARKIVOC 2001, 7, 82–86.
[16] S. K. Tripathi, U. Patel, D. Roy, R. B. Sunoj, H. B. Singh, G. Wolmer-
shꢁuser, R. J. Butcher, J. Org. Chem. 2005, 70, 9237–9247.
[17] Structures of the naphthalene system 8-G-1-(ArSe)C10H6 are well
classified by type A (A), type B (B), and type C (C) structures, with
ꢁ
the Se CAr bond located almost perpendicular to the naphthyl plane
[4] W. Nakanishi, S. Hayashi, S. Yamaguchi, K. Tamao, Chem.
Commun. 2004, 140–141.
in A and in the naphthyl plane in B, whereas C is a structure inter-
mediate between A and B (see ref. [38] and also Scheme 2).
[18] A. Bondi, J. Phys. Chem. 1964, 68, 441–451.
[5] a) G. C. Pimentel, J. Chem. Phys. 1951, 19, 446–448; b) J. I. Musher,
Angew. Chem. 1969, 81, 68–83; Angew. Chem. Int. Ed. Engl. 1969,
8, 54–68; c) R. J. Hatch, R. E. Rundle, J. Am. Chem. Soc. 1951, 73,
4321–4324; d) R. E. Rundle, J. Am. Chem. Soc. 1963, 85, 112–113.
[6] a) M. M. L. Chen, R. Hoffmann, J. Am. Chem. Soc. 1976, 98, 1647–
1653; b) P. J. Hay, J. Am. Chem. Soc. 1977, 99, 1003–1012; c) W.
Kutzelnigg, Angew. Chem. 1984, 96, 262–286; Angew. Chem. Int.
Ed. Engl. 1984, 23, 272–295; d) A. E. Reed, F. Weinhold, J. Am.
Chem. Soc. 1986, 108, 3586–3593; e) A. E. Reed, P. von R. Schleyer,
J. Am. Chem. Soc. 1990, 112, 1434–1445; f) M. M. L. Chen, R. Hoff-
mann, J. Am. Chem. Soc. 1976, 98, 1647–1653; g) P. A. Cahill, C. E.
Dykstra, J. C. Martin, J. Am. Chem. Soc. 1985, 107, 6359–6362;
h) N. C. Baenziger, R. E. Buckles, R. J. Maner, T. D. Simpson, J.
Am. Chem. Soc. 1969, 91, 5749–5755.
[7] a) R. A. Hayes, J. C. Martin, “Sulfurane Chemistry” in Organic
Sulfur Chemistry: Theoretical and Experimental Advances (Eds.: F.
Bernardi, I. G. Csizmadia, A. Mangini), Elsevier, Amsterdam, 1985,
Chapter 8; b) J. Bergman, L. Engman, J. Siden, “Tetra- and Higher-
Valent (Hypervalent) Derivatives of Selenium and Tellurium” in
The Chemistry of Organic Selenium and Tellurium Compounds,
Vol. 1 (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1986, Chap-
ter 14; c) The Organic Chemistry of Tellurium (Ed.: K. J. Irgolic),
Gordon and Breach, New York, 1974.
[19] The nonbonded O···S distances in
2 (S-B) are 2.6495(11) and
ꢁ
ꢁ
ꢁ
ꢁ
2.6392(11) . The O(1B) S(1B) C
angles in 2 (S-B) are 178.49(5) and 171.98(6)8, respectively. The
G
G
ꢁ
ꢁ
S(1B) O(1B) S(2B) angle is 157.97(4)8.
[20] Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomer-
y, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyen-
gar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J.
Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C.
Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cio-
slowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaro-
mi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wall-
ingford CT, 2004.
[8] Chemistry of Hypervalent Compounds (Ed.: K.-y. Akiba), Wiley-
VCH, New York, 1999.
[21] AIM2000 program (version 2.0) employed to analyze and visualize
atoms in molecules: F. W. Biegler-Kçnig, J. Schçnbohm, D. Bayles,
J. Comput. Chem. unpublished results.
[22] NBO (version 3.1), E. D. Glendening, A. E. Reed, J. E. Carpenter,
F. Weinhold, Theoretical Chemistry Institute, University of Wiscon-
sin, Madison, 2001.
[9] a) G. Mugesh, A. Panda, H. B. Singh, N. S. Punekar, R. J. Butcher,
Chem. Commun. 1998, 2227–2228; b) J. E. Drake, M. B. Hurst-
house, M. Kulcsar, M. E. Light, A. Silvestru, Phosphorus Sulfur Sili-
con 2001, 169, 293–296; c) G. Mugesh, A. Panda, H. B. Singh, N. S.
Punekar, R. J. Butcher, J. Am. Chem. Soc. 2001, 123, 839–850; d) S.
Tomoda, M. Iwaoka, J. Chem. Soc., Chem. Commun. 1990, 23 1–
233; e) J. E. Drake, M. B. Hursthouse, M. Kulcsar, M. E. Light, A.
Silvestru, J. Organomet. Chem. 2001, 623, 153–160; f) G. Mugesh,
A. Panda, S. Kumar, S. D. Apte, H. B. Singh, R. J. Butcher, Organo-
[23] The MP2 level with the same basis sets also gave similar results (see
Table 4).
[24] Contributions of p(C=O) character to 7 and 8 are also predicted to
N
ꢁ
be very small (l1/l2ꢁ1=0.07 for both). The ionic C+
nature of
ꢁ
O
Chem. Eur. J. 2007, 13, 255 – 268
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
267