D. G. Velazquez, R. Luque / Tetrahedron Letters 52 (2011) 7004–7007
7007
Product 11 was synthesized from 5 as described in Scheme 6. A
solution of LiAlH4 (140 mg, 3.70 mmol, 2.2 equiv) in dry THF (5 mL)
was added dropwise to a solution of 5 (500 mg, 1.67 mmol) in THF
(3 mL) at room temperature for 1 h. The mixture was stirred for 4 h
and then washed several times with a solution of ammonium sul-
fate (15 mL) and left under stirring overnight. The final solution
was filtered through celite and extracted with EtOAc. Compound
11 was obtained as a yellowish oil (360 mg, 89% yield). The crude
product was employed in the following reaction without purifica-
tion. IR (KBr, cmÀ1): 3397, 2972, 2870.6, 1723, 1452. 1H NMR
(300 MHz, d, CDCl3): 1.39 (s, 3H), 2.57 (s, 2H), 2.63–2.71
(t, J = 10 Hz, 2H), 3.65 (t, J = 8 Hz, 2H), 4.15–4.22 (m, 4H), 4.89
(s, 2H), 7.69 (s, 1H). 13C NMR (75 MHz, d, CDCl3): 20 (q), 26 (t),
45(t), 56 (t), 61 (t), 63 (t), 65 (t), 108 (s), 118 (s), 121 (s), 137 (d),
149 (s). Anal. Calcd for C12H18O5: %C 59.49; %H 7.49. Found: %C
59.52; %H 7.42.
Product 12 was synthesized from 11 as described in Scheme 6.
MnO2 (144 mg, 1.65 mmol, 20 equiv) was added to a solution of 5
(20 mg, 0.08 mmol) in dry dichloromethane (3 mL). The mixture
was stirred for 48 h at room temperature, then filtered off through
celite and washed with EtOAc. The organic layer was dried over
anhydrous MgSO4 and the solvent was evaporated in a rotary evap-
orator to yield compound 12 (17.6 mg, 92% yield) as an oil, without
further chromatographic purification needed. IR (KBr, cmÀ1):
3380.8, 2932, 2859, 1723.5, 1642, 1450. 1H NMR (300 MHz, d,
CDCl3): 1.42 (s, 3H), 2.59 (s, 2H), 3.46 (s, 2H), 3.64 (d, J = 11 Hz,
2H), 4.15–4.22 (m, 4H), 7.67 (s, 1H), 9.59 (s, 1H), 9.77–9.81 (t,
J = 14 Hz, 1H). 13C NMR (75 MHz, d, CDCl3): 21 (q), 36 (t), 43 (t),
64 (t), 66 (t), 109 (s), 111,(s) 132 (s), 149 (d), 154 (s), 184 (s),
200 (s). Anal. Calcd for C12H14O5: %C 60.50; %H 5.92. Found: %C
60.38; %H 5.98.
Product 18 was synthesized from 16 as described in Scheme 7:
A solution of 16 (ethylenglycolborane, 65.5 mg, 0.91 mmol) in dry
Et2O (5 mL) was added dropwise to a suspension of 17 (100 mg,
0.91 mmol) in dry Et2O (3 mL) at 0 °C under nitrogen atmosphere.
The mixture was stirred until complete dissolution, indicating
reaction completion. The solvent was evaporated in a rotary evap-
orator, yielding 18 (157 mg, 95%) as a transparent oil. The crude
product was used in the next step without further chromato-
graphic purification. IR (KBr, cmÀ1): 3287.8, 2934.5, 2873.8,
1408.6. 1H NMR (300 MHz, d, CDCl3): 1.22–1.27 (d, J = 8.25 Hz,
2H), 4.15 (s, 4H), 4.37 (s, 4H), 5.21–5.26 (d, J = 15.3 Hz, 1H),
6.57–6.62 (dt, J = 7.2 Hz, J = 15.3 Hz, 1H). 13C NMR (75 MHz, d,
CDCl3): 32 (t), 63 (t), 66 (t), 126 (d), 138 (d). Anal. Calcd for
C7H12B2O4: %C 46.25; %H 6.65. Found: %C 46.23; %H 6.77.
Product 3 was synthesized from 12 as described in Scheme 8. A
freshly prepared solution of 18 (13.63 mg, 0.075 mmol) in dry Et2O
(7 mL) was added dropwise (2 h) to a solution of 12 (18 mg,
0.075 mmol) in dry Et2O (0.5 mL) under nitrogen atmosphere at
À78 °C. The mixture was stirred for 2 h at À78 °C and then for
24 h at room temperature. The reaction flask was subsequently
7.60 (s, 1H), 5.67 (m, J=7.92 Hz, 1H), 5.53 (m, J = 16.3, 7.9 Hz, 1H),
4.85 (m, J = 12.2 Hz, 1H), 4.57 (m, 1H), 4.16 (m, 4H), 3.12 (d,
J = 18 Hz, 2H), 2.75 (t, J = 12.5 Hz, 2H), 2.59 (s, 2H), 1.39 (s, 3H).
13C NMR (75 MHz, d, CDCl3): 23 (q), 38 (t), 41 (t), 65 (t), 65.5 (t),
71 (d), 73 (d), 110 (s), 120 (s), 127 (s), 132 (d), 134 (d), 145 (d),
156 (s). Anal. Calcd for C15H20O5: %C 64.27; %H 7.19. Found: %C
64.35; %H 6.98. More details of this compound including 1H and
13C NMR as well as HMDC spectra can be found in the ESI.
Acknowledgments
This research was supported by the Ministerio de Educación y
Ciencia de España (MEC, SAF2006-06720). DGV acknowledges
Gobierno de Canarias for a pre-doctoral fellowship. RL gratefully
acknowledges Ministerio de Ciencia e Innovación for the conces-
sion of a Ramon y Cajal contract (RYC-2009-04199) and funding
in the framework of project CTQ2011-28954-C02-02 as well as
Consejeria de Ciencia e Innovacion, Junta de Andalucia for funding
project P10-FQM-6711.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Breinbauer, R.; Vetter, I. R.; Waldmann, H. Angew. Chem., Int. Ed. 2002, 41,
2878–2890.
2. Atuegbu, A.; MacLean, D.; Nguyen, C.; Gordon, E. M.; Jacobs, J. W. Bioorg. Med.
Chem. 1996, 4, 1097–1106.
3. Xaio, X. Y.; Parandoosh, Z.; Nova, M. P. J. Org. Chem. 1997, 62, 6029–60332.
4. Xu, R.; Grieveldinger, G.; Marenus, L. E.; Cooper, A.; Ellman, J. A. J. Am. Chem.
Soc. 1999, 121, 4898–4899.
5. Nicolaou, K. C.; Pfefferkorn, J. A.; Mitchell, H. J.; Roecker, J.; Barluenga, S.; Cao,
G. Q.; Affleck, R. L.; Lillig, J. J. Am. Chem. Soc. 2000, 122, 9954–9967.
6. Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46–58.
7. Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 1038–1040.
8. Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035–1050.
9. Eguren, L.; Perales, A.; Rodríguez, B.; Savona, G.; Piozzi, F. J. Org. Chem. 1982, 47,
4157–4160.
10. de la Torre, M. C.; Bruno, M.; Piozzi, F.; Savona, G.; Omar, A.; Perales, A.;
Rodríguez, B. Tetrahedron 1991, 47, 3463–3465.
11. Tokoroyama, T. Synthesis 2000, 611.
12. Rodriguez-Hahn, L.; Esquivel, B.; Cardenas, J. Prog. Chem. Org. Nat. Prod. 1994,
63, 107.
13. Hanson, J. R. Nat. Prod. Rep. 1994, 11, 265.
14. Meritt, A. T.; Ley, S. V. Nat. Prod. Rep. 1992, 9, 243.
15. Simmonds, M. S. J.; Blaney, W.; Ley, S. V.; Bruno, M.; Rodriguez, B.; Savona, G.
Phytochemistry 1989, 28, 1069–1071.
16. Piozzi, F.; Rodríguez, B.; Savona, G. Heterocycles 1987, 25, 807–841.
17. Hanson, J. R.; Rivett, D. E. A.; Ley, S. V.; Williams, D. J. J. Chem. Soc. Perkin Trans. 1
1982, 1005–1008.
18. Kawasaki, H.; Noro, T.; Ueno, A.; Takemoto, T. Chem. Pharm. Bull. 1981, 29,
3561–3564.
19. Piozzi, F.; Bruno, M.; Roselli, S. Heterocycles 1998, 48, 10–14.
20. Rodriguez, B.; De la Torre, M. C.; Perales, A.; Malakov, P. Y.; Papanov, G. Y.;
Simmonds, M. S. J.; Blaney, W. M. Tetrahedron 1994, 50, 5451–5468.
21. Gebbinck, E. A. K.; Jansen, B. J. M.; de Groot, A. Phytochemistry 2002, 61, 737–
770.
22. Rodriguez, B.; de la Torre, M. C.; Jimeno, M. L.; Bruno, M.; Fazio, C.; Piozzi, F.;
Savona, G.; Perales, A. Tetrahedron 1995, 51, 837–840.
23. Efremov, I.; Paquette, L. A. J. Am. Soc. 2000, 122, 9324–9325.
24. Efremov, I.; Paquette, L. A. J. Am. Chem. Soc. 2001, 123, 4492–4501.
25. Paquette, L. A. Chemtracts-Org. Chem. 2002, 15, 345–366.
26. Efremov, I.; Paquette, L. A. Heterocyclic 2002, 56, 35–38.
27. For more details of reaction mechanism see: Flamme, E. M.; Roush, W. R. J. Am.
Chem. Soc. 2002, 124, 13644.
placed in an ice bath and a solution of NaOH 3 M (56
added dropwise, followed by the addition of a solution of H2O2 50%
(22 L). The reaction was stirred vigorously for 4 h at room tem-
lL) was then
l
perature. The extracts were washed with DCM (4 mL), a saturated
solution of NaHCO3 (2 mL) and another saturated solution of NaCl
(2 mL). The aqueous phase was extracted with DCM and subse-
quently dried over anhydrous MgSO4. The solvent was evaporated
until dryness in rotavapor and the crude oil was purified by flash
column chromatography (silica gel, n-hexane/EtOAc 7:3). Com-
pound 3 was obtained as a colorless oil (10.1 mg, 48 %). IR (KBr,
cmÀ1): 3347, 2756, 1134, 752, 523. 1H NMR (300 MHz, d, CDCl3):
28. Tejedor, D.; Santos-Expósito, A.; González-Cruz, D.; Marrero-Tellado, J. J.;
García-Tellado, F. Chem. Eur. J. 2005, 11, 3502–3510.
29. Garner, P.; Park, J. M. Org. Synth. 1991, 70, 18–20.
30. Lou, J. D.; Xu, Z. N. Tetrahedron Lett. 2002, 43, 6149–6150.