3
corresponding 3-hydroxyloxindolines as dark red solids. To the
solution of above residue in THF (25 mL) was added pyridine (15 mmol)
and SOCl2 (25 mmol) at 0 °C. After reaction completion as indicated by
TLC, the reaction mixture was concentrated in vacuo. The residue was
dissolved in ethyl acetate (30 mL) and washed with aqueous sat.
NaHCO3 (20 mL), brine (20 mL), dried over Na2SO4 and concentrated.
The crude product was purified by column chromatography (0%-50%
ethyl acetate in cyclohexane) to give compounds 5a-k.
8. General procedure for synthesis of spiroquinolinones: A mixture of
diamines 3 (0.70 mmol) and Cs2CO3 (1.75 mmol) in CH2Cl2 (1.5 mL)
were stirred at rt for 10 min before a solution of 3-chlorooxindolines 5
(0.35 mmol) in CH2Cl2 (1.5 mL) was added dropwise. The resultant
mixture was stirred at room temperature for 16 h. The reaction mixture
was concentrated in vacuo and the residue purified by column
chromatography (0%-50% ethyl acetate in cyclohexane) to give
compounds 6 as solids.
9. For an example of oxidative spriooxindole ring expansion, see: Bergman,
J.; Arewang, C-J.; Svensson, P. H. J. Org. Chem. 2014, 79, 9065-9073.
10. For similar examples involving oxindoline ring opening rearrangements,
see: a) Rajesh, R.; Raghunathanm R. Eur. J. Org. Chem. 2013, 2597-
2607; b) Bertamino, A.; Aquino, C.; Sala, M.; de Simone, N.; Mattia, C.
A.; Erra, L.; Musella, S.; Iannelli, P.; Carotenuto, A.; Grieco, P.;
Novellino, E.; Campiglia, P.; Gomez-Monterrey, I. Bioorg. Med. Chem.
2010, 18, 4328-4337.
Scheme 3. Proposed mechanism of the reaction.
In summary, a mild and efficient synthesis of a novel class of
spiroquinolinone compounds via a two component condensation
reaction has been developed. Evaluation of the biological
activities for this new class of spiro-compounds will be reported
in due course.
Acknowledgments
We thank all the chemists at Novartis Institute for Tropical
Diseases for providing support performing this research. We
thank Dr. Trixie Wagner and Dr. Ina Dix for collecting the X-ray
data.
Supplementary Material
Supplementary material that may be helpful in the review
process should be prepared and provided as a separate electronic
file. That file can then be transformed into PDF format and
submitted along with the manuscript and graphic files to the
appropriate editorial office.
References and notes
1. For reviews, see: a) Santos, M. M. M. Tetrahedron 2014, 70, 9735-9757;
b) Hong, L.; Wang, R. Adv. Synth. Catal. 2013, 355, 1023-1052; c) Ball-
Jones, N. R.; Badillo, J. J.; Franz, A. K. Org. Biomol. Chem. 2012, 10,
5165-5181; d) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104-
6155; e) Galliford, C. V.; Scheidt, K. A. Angew. Chem. Int. Ed. 2007, 46,
8748-8758.
2. a) Rottmann, M.; McNamara, C.; Yeung, B. K. S.; Lee, M. C. S.; Zou,
B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen,
S. B.; Spencer, K. R.; González-Páez, G. E.; Lakshminarayana, S. B.;
Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H. -P.; Brun,
R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.;
Winzeler, E. A.; Diagana, T. T. Science 2010, 329, 1175-1180; b) Yeung,
B. K. S.; Zou, B.; Rottmann, M.; Lakshminarayana, S. B.; Ang, S. H.;
Leong, S. Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.;
Schmitt, E. K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson,
K.; Wagner, T.; Winzeler, E. A.; Petersen, F.; Brun, R.; Dartois, V.;
Diagana, T. T.; Keller, T. H. J. Med. Chem. 2010, 53, 5155-5164; c) Zou,
B.; Yap, P.; Sonntag, L.-S.; Leong, S. Y.; Yeung, B. K. S.; Keller, T. H.
Molecules 2012, 17, 10131-10141; d) White, N. J.; Pukrittayakamee, S.;
Phyo, A. P.; Rueangweerayut, R.; Nosten, F.; Jittamala, P.; Jeeyapant,
A.; Jain, J. P.; Lefevre, G.; Li, R.; Magnusson, B.; Diatana, T. T.; Leong,
F. J. N. Engl. J. Med. 2014, 371, 403-410.
3. a) Zou, B.; Chan, W. L.; Ding, M. ; Leong, S. Y.; Nilar, S.; Seah, P. G.;
Liu, W.; Karuna, R.; Blasco, F.; Yip, A.; Chao, A.; Susila, A.; Dong, H.;
Wang, Q. Y.; Xu, H. Y.; Chan, K.; Wan, K. F.; Gu, F.; Diagana, T. T.;
Wagner, T.; Dix, I.; Shi, P. Y.; Smith P. W. ACS Med. Chem. Lett. 2015,
6, 344-348; b) Wang, Q. Y.; Dong, H.; Zou, B.; Karuna, R.; Wan, K. F.;
Zou, J.; Susila, A.; Yip, A.; Shan, C.; Yeo, K. L.; Xu, H.; Ding, M.;
Chan, W. L.; Gu, F.; Seah, P. G.; Liu, W.; Lakshminarayana, S. B.;
Kang, C.; Lescar, J.; Blasco, F.; Smith, P. W.; Shi, P. Y. J. Viol. 2015,
doi:10.1128/JVI.00855-15.
4. a) Zou, B.; Chen, C.; Leong, S. Y.; Ding, M.; Smith, P. W. Tetrahedron
2014, 70, 578-582; b) Leong, S. Y.; Smith, P. W.; Zou, B. Chin. J. Chem.
2014, 32, 1217-1220.
5. The X-ray crystallographic data of compound 6a has been uploaded to
the Cambridge Crystallography Data Center (CCDC No. 1416486)
6. a) Garden, S. J.; da Silva, R. B.; Pinto, A. C. Tetrahedron 2002, 58,
8399-8412; b) Magnus, P.; Turnbull, R. Org. Lett. 2006, 8, 3497-3499.
7. General procedure for the synthesis of 3-chlorooxindolines 5a-k: To the
mixture of isatins 7 (5 mmol) in ethanol/pyridine/acetic acid (33 mL,
7.5:2.5:1) was added acid 8 (5.5 mmol) and the resulting mixture was
heated at reflux for 16 h. After cooling to rt, the reaction mixture was
concentrated in vacuo. The residue was dissolved in ethyl acetate (50
mL) and the resulting solution washed with aqueous NaHCO3 (30 mL),
brine (30 mL), dried over Na2SO4 and concentrated to give the