tion pathways. The major solid-state degradation pathways
described by Dorman et al.21 lead to multiple degradation
products, many of which are not formed under aqueous
conditions. Together, the aqueous and solid-state degradation
investigations reveal some of the diverse degradation chem-
istry of the the cefaclor molecule. Degradation pathways can
now be compared with that of loracarbef, the 1-carba analog
of cefaclor.2
6,27
Evaluation of these aqueous and solid-state
degradation pathways reveals the prominent role of the sulfur
atom in the degradation of cefaclor.
References and Notes
1
. Baertschi, S. W.; Dorman, D. E.; Occolowitz, J . L.; Spangle, L.
A.; Collins, M. W.; Wildfeuer, M. E.; Lorenz, L. J . J . Pharm.
Sci. 1993, 82, 622-626.
2
3
4
. (a) Dinner, A. J . Med. Chem. 1977, 20, 963; (b) Tai, J ., Eli Lilly
and Company, unpublished results.
. Barbhaiya, R. H.; Brown, R. C.; Payling, D. W.; Turner, P. J .
Pharm. Pharmacol. 1978, 30, 224-227.
. Demarco, P. V.; Nagarajan, R. In Cephalosporins and Penicil-
lins: Chemistry and Biology; Flynn, E. H., Ed., Academic: New
York; 1972; Chapter 8.
5
6
. Altomare, A.; Cascarano, G.; Giacovazzo, C.; Burla, M. C.;
Polidori, G.; Camalli, M. J . Appl. Crystallogr. 1994, 27, 435.
. Sheldrick, G. M. “SHELXS93: A Program for Crystal Structures
Refinement,” University of Gottingen, Gottingen, Germany,
1
993.
. Doddrell, D. M.; Pegg, D. T.; Bendall, M. R. J . Magn. Reson.
982, 48, 323.
7
8
1
. Derome, A. E. in Modern NMR Techniques for Chemistry
Research, Baldwin, J . E., Ed.; Organic Chemistry Series, Per-
gamon: New York, 1987; Chapter 9.
Figure 7s
ORTEP diagram of ∆2-cefaclor. Ellipsoids are drawn at the 50%
probability level.
9
. Martin, G. E.; Zektzer, A. S. Magn. Reson. Chem. 1988, 26, 640-
6
41.
1
1
0. Marshall, J . L. In Carbon-Carbon and Carbon-Proton NMR
Couplings: Applications to Organic Stereochemistry and Con-
formational Analysis; Marchand, A. P., Ed.; Methods in Stere-
ochemical Analysis; Verlag Chemie International: Deerfield
Beach, FL, 1983; Vol. 2, Chapter 2.
1. Porter, Q. N.; Baldas, J . In Mass Spectroscopy of Heterocyclic
Compounds; Weissberger, A.; Taylor, E. C., Eds.; General
Heterocyclic Chemistry; Wiley-Interscience: New York, 1971,
p 491.
evidence, allows a plausible explanation of the origin of
degradation products 10, 13, and 15.
Simple Hydrolysis or Rearrangement Productss4, 14, 5,
and 6sCompound 4 (phenylglycine) can arise from a simple
hydrolysis of the phenylglycyl-glycine peptide bond. This
hydrolysis can occur directly on cefaclor or any of the degrada-
tion products or intermediates in which the phenylglycyl side
chain is intact. Compound 5 (phenylglycylglycine) can be
formed from cleavage of the C6-C7 bond, presumably after
â-lactam ring-opening. Although Scheme 2 illustrates the
formation of 4 from (d), there are probably multiple “path-
ways” for this simple cleavage. Compound 6 is the result of
a simple tautomerization of the dihydrothiazine double bond.
Compound 14 results from an intramolecular nucleophilic
attack of the 11′-amine on the â-lactam carbonyl (C8) followed
by cleavage of the C6-C7 bond. This nucleophilic attack most
likely occurs when the â-lactam is intact rather than after
â-lactam hydrolysis.23 The fact that this compound is a major
degradation product at pH 5.5, but was not detected in the
acidic degradation solutions is consistent with this hypothesis,
because at lower pH, the amine would be more fully proto-
nated and intramolecular nucleophilic attack on the â-lactam
carbonyl would not occur when the amine is in the protonated
state.
12. Metzger, J . V.; Vincent, E.-J .; Chouteau, J .; Mille, G. In Thiazole
and Its Derivatives, Metzger, J . V., Ed.; Wiley Interscience: New
York, 1979; pp 5-149.
1
3. GENOA is a computer program designed to generate all
candidate structures consistent with the molecular formula and
a given set of substructural constraints; cf. Carhart, R. E., et
al., J . Org. Chem. 1981, 46, 1708-1718.
4. Uno, T.; Masada, M.; Kuroda, Y.; Nakagawa, T. Chem. Pharm.
Bull. 1981, 29, 1344-1354.
1
15. (a) Silverstein, R. M.; Bassler, G. C. Spectrometric Identification
of Organic Compounds, 1st ed.; Wiley: New York, 1963; ap-
pendix B; (b) Smith, S. L. J . Chem. Ed. 1977, 54, 255.
1
6. Tabata, N.; Tomoda, H.; Matsuzaki, K.; Omura, S. J . Am. Chem.
Soc. 1993, 115, 8558.
17. The standard of 13 was prepared from the degradation of
cephalexin in the presence of benzaldehyde; see Experimental
Section for details.
1
8. Kopple, K. D.; Ohnishi, M. J . Am. Chem. Soc. 1969, 91 (4), 962-
9
70.
19. A search of Chemical Abstracts database revealed 15 different
patented R-hydroxy amino acid derivatives.
0. Schreiner, C. L.; J ones, E. E. J . Nutr. 1987, 117 (9), 1541-1549.
1. Dorman, D. E.; Lorenz, L. J .; Occolowitz, J . L.; Spangle, L. A.;
Collins, M. W.; Bashore, F. N.; Baertschi, S. W. J . Pharm. Sci.
2
2
Conclusions
1
997, 86, 540-549 (following paper in this issue).
2
2. Martinez, H.; Byrn, S. R.; Pfeiffer, R. R. Pharm. Res. 1990, 7
In this study of the aqueous degradation of cefaclor, we have
identified more than a dozen degradation products and have
proposed several major degradation pathways. This study,
while extensive, is not an exhaustive examination of the
aqueous degradation pathways of cefaclor. The degradation
pathways of cefaclor under neutral and basic pH conditions
(2), 147-153.
23. Nakashima, E.; Tsuji A.; Nakamura M.; Yamana, T. Chem.
Pharm. Bull. 1985, 33, 2098-2106.
2
2
2
2
4. Vilanova, B.; Donoso, J .; Mu n˜ oz, F.; Garcia-Blanco, F. Helv.
Chim. Acta 1996, 79, 1793-1802.
5. Indelicato, J . M.; Dorman D. E.; Engel, G. L. J . Pharm.
Pharmacol. 1981, 33, 119-121.
6. Baertschi, S. W.; Dorman, D. E.; Spangle, L. A.; Collins, M. S.;
Lorenz, L. J . J . Pharm. Biomed. Anal. 1995, 13, 323-328.
7. Skibic, M. J .; Taylor K. W.; Occolowitz, J . L.; Collins, M. W.;
Paschal, J . W.; Lorenz, L. J .; Spangle, L. A.; Dorman, D. E.;
Baertschi, S. W. J . Pharm. Sci. 1993, 82 (10), 1010-1017.
are complex, essentially unexplored, and remain to be eluci-
dated. The recent study by Vilanova et al.24 describing a
major pathway of cefaclor degradation under neutral condi-
tions provides an excellent start to exploring these degrada-
5
38 / Journal of Pharmaceutical Sciences
Vol. 86, No. 5, May 1997