ChemComm
Communication
(Table 1, entries 2 vs. 4) faster reaction. Further physical and
kinetic characterization will be required to distinguish the
contributions of enhanced monomer binding vs. enhanced
monomer reactivity for these observations.
In conclusion, we have developed a scalable synthesis of a
2-thio modified thymidine monomer, 30-NH2-2-MeImpdds2T.
Our synthetic route provided this highly reactive nucleotide in
sufficient amounts to perform quantitative measurements of
nonenzymatic RNA template-copying rates for the first time.
Our results show that 30-NH2-2-MeImpdds2T can polymerize on
a DNA/RNA primer/template complex significantly faster than
any other U or T monomer that has been reported thus far.
We thank Dr Shao-Liang Zheng (Harvard) for help with X-ray
data collection and structure determination, and Prof. Mohammad
Movassaghi (MIT) and Dr Justin Kim (MIT) for their guidance in
performing safe hydrogen sulfide experiments. We also thank
Dr Lijun Zhou and Ms Moriana Haj for technical assistance and
Dr Albert C. Fahrenbach, Dr Victor S. Lelyveld, Mr Tony Z. Jia,
and Mr Chun Pong Tam for helpful discussions. J. W. S. is an
Investigator of the Howard Hughes Medical Institute. This work
was supported in part by a grant (290363) from the Simons
Foundation to J. W. S.
Fig. 2 Kinetics of copying a r(A)4(C)2 template with 30-NH2-2-MeImpddT
(left) and 30-NH2-2-MeImpdds2T (right), in the presence of 100 mM
1-(2-hydroxyethyl)-imidazole, at pH 7.5 and 4 1C. Reactions were initiated
by addition of monomers and monitored by gel electrophoresis. The
triangle indicates the primer +4 product. (bottom) Natural log of the
fraction of the unreacted primer plotted against incubation time. Errors
were based on two experiments. Primer strand (DNA, 0.2 mM): 50-(FAM)-
AGC-GTG-ACT-GAC-TGG-(NH2)-30, obtained enzymatically in ca. 85%
purity based on LC-HRMS (see the ESI†). Primer concentration was
corrected for unreactive oligonucleotide impurity. Template strand (RNA,
1 mM): 50-CCAAAA-CCA-GUC-AGU-CAC-GCU-30 RNA.
Notes and references
1 M. P. Robertson and G. F. Joyce, The Origins of the RNA World,
CSHP Biol., 2012, 4, a003608.
2 T. Inoue and L. E. Orgel, J. Am. Chem. Soc., 1981, 103, 7667.
3 W. S. Zielinski and L. E. Orgel, Nucleic Acids Res., 1985, 13, 2469.
4 M. Tohidi, W. S. Zielinski, C. H. Chen and L. E. Orgel, J. Mol. Evol.,
1987, 25, 97.
Table 1 Reaction kinetics measured for 10 mM T/U monomers at 4 1C
5 V. Tereshko, S. Gryaznov and M. Egli, J. Am. Chem. Soc., 1998,
120, 269.
Relative
kobs
¨
¨
6 M. Kurz, K. Gobel, C. Hartel and M. W. Gobel, Angew. Chem., Int.
Ed. Engl., 1997, 36, 842.
Entry
Template
Monomer
kobs (hꢀ1
)
7 I. A. Kozlov, P. K. Politis, A. V. Aerschot, R. Busson, P. Herdewijn and
L. E. Orgel, J. Am. Chem. Soc., 1999, 121, 2653.
8 S. Zhang, N. Zhang, J. C. Blain and J. W. Szostak, J. Am. Chem. Soc.,
2013, 135, 924.
9 S. Zhang, J. C. Blain, D. Zielinska, S. M. Gryaznov and J. W. Szostak,
Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 17732.
1a
2a
3b
4b
5b
r(A)4(C)2
r(A)4(C)2
r(A)6
r(A)6
r(A)6
30-NH2-2-MeImpddT
30-NH2-2-MeImpdds2T
2-MeImpU
0.42 (1)
1.92 (2)
ND
0.064 (1)
0.22 (6)
7
30
—
1
2-MeImps2U
2-MeImps2T
3
10 Y. Masaki, R. Miyasaka, K. Hirai, H. Tsunoda, A. Ohkubo, K. Seio
and M. Sekine, Chem. Commun., 2012, 48, 7313.
a
In the presence of 100 mM 1-(2-hydroxyethyl)imidazole. b Data obtained
from ref. 18. Reactions performed with 200 mM MgCl2 at pH 7.0.
11 P. C. Tlatelpa and H. Huang, Tetrahedron Lett., 2014, 55, 4780–4784.
12 T.-S. Lin, Z.-Y. Shen, E. M. August, V. Brankovan, H. Yang,
I. Ghazzouli and W. H. Prusoff, J. Med. Chem., 1989, 32, 1891.
13 This compound is 200 times cheaper (per 1 gram) than the starting
material [50-O-(dimethoxytrityl)-N3/O4-(toluoyl)-2-thiothymidine] that
we used for the earlier synthetic route9.
lower than the values for the activated 30-amino nucleotides
described above (Table 1), even though these ribonucleotide
polymerizations were assayed in the presence of 200 mM Mg2+
to optimize the reactivity. The rate enhancement observed for
2-MeImps2T vs. 2-MeImps2U suggests that methylation at the
5-position of 2-thiouracil leads to stronger monomer–primer
stacking. Additionally, primer extension reactions with 30-NH2-
2-MeImpdds2T are 10-fold faster than with the corresponding
ribonucleotide, 2-MeImps2T, presumably due to the greater
nucleophilicity of the 30-amine. Remarkably, combining the effect
of the 30-amine and the 5-methyl groups results in an ca. 30-fold
14 A. Miazga, F. Hamy, S. Louvel, T. Klimkait, Z. Pietrusiewicz,
˜
˜
A. Kurzynska-Kokorniak, M. Figlerowicz, P. Winska and T. Kulikowski,
Antiviral Res., 2011, 92, 57.
15 E. Kervio, A. Hochgesand, U. E. Steiner and C. Richert, Proc. Natl.
Acad. Sci. U. S. A., 2010, 107, 12074.
16 A. T. Larsen, A. C. Fahrenbach, J. Sheng, J. Pian and J. W. Szostak,
Nucleic Acids Res., 2015, 43, 7675.
17 N. Zhang, S. Zhang and J. W. Szostak, J. Am. Chem. Soc., 2012,
134, 3691.
18 B. D. Heuberger, A. Pal, F. D. Frate, V. V. Topkar and J. W. Szostak,
J. Am. Chem. Soc., 2015, 137, 2769.
This journal is ©The Royal Society of Chemistry 2016
Chem. Commun.