A R T I C L E S
Nakao et al.
Of many types of organosilicon compounds, tetraorganosi-
lanes should be ideal in view of their high stability. As is the
case with ubiquitous triorganosilyl protecting groups, alkenyl-
and aryltriorganosilanes survive many synthetic transformations,
allowing their installation at even an early stage of complex
natural product syntheses.13 A wide range of (E)-, (Z)-, and
R-substituted triorgano(vinyl)silanes are readily available by
virtue of recent progress in transition metal-catalyzed hydro-
silylation of alkynes.14 Whereas a classical strategy involving
transmetalation between aryl-Grignard or -lithium reagents with
triorganosilyl halides still serves as a convenient access to simple
aryltriorganosilanes, the metal-catalyzed cross-coupling reactions
of aryl halides with disilanes15 or hydrosilanes16 and direct
silylation of Ar-H bonds17 have gained significant synthetic
value as highly chemoselective and atom economical alternatives
to classical syntheses of arylsilanes. In light of the growing
importance of silicon-based transformations, we have recently
disclosed that organo[2-(hydroxymethyl)phenyl]dimethylsilanes
(1) behave as a new class of silicon reagents for the palladium-
catalyzed cross-coupling reaction.18 The reagents allow chemi-
cally stable tetraorganosilicon compounds19 to participate in the
cross-coupling chemistry under fluoride-free conditions for the
first time with excellent chemoselectivities. The proximal
hydroxyl group is supposed to coordinate to the nearby silicon
atom upon treatment with a mild base, such as K2CO3, to
produce a requisite five-membered pentacoordinated silicate
species.18 With the given success of the silicon reagents 1 in
the cross-coupling chemistry, we envisioned the use of 1 as a
Figure 1. Conversion vs time for the reactions of a phenylmetal reagent
([Ph-M]0 ) 67 mM) with methyl vinyl ketone ([2a]0 ) 201 mM) in the
presence of a rhodium catalyst ([Rh]total ) 2.7 mM) at 30 or 50 °C: (a)
PhB(OH)2 as the nucleophile and [Rh(OH)(cod)]2 as the catalyst in 1,4-
dioxane/H2O (10/1) at 30 °C in the presence of [B(OH)3]0 ) 536 mM (for
the reaction conditions, see ref 21); (b) 1a as the nucleophile and [Rh-
(OH)(cod)]2 as the catalyst in 1,4-dioxane at 50 °C; (c) 1a as the nucleophile
and [Rh(OH)(cod)]2 as the catalyst in THF at 30 °C; (d) PhSi(OMe)3 as
the nucleophile and [Rh(cod)(MeCN)2]BF4 as the catalyst in 1,4-dioxane/
H2O (10/1) at 50 °C.
(13) (a) Trost, B. M.; Frederiksen, M. U.; Papillon, J. P. N.; Harrington, P. E.;
Shin, S.; Shireman, B. T. J. Am. Chem. Soc. 2005, 127, 3666. (b) Denmark,
S. E.; Fujimori, S. J. Am. Chem. Soc. 2005, 127, 8971. (c) Fu¨rstner, A.;
Nagano, T. J. Am. Chem. Soc. 2007, 129, 1906.
(14) (a) Hiyama, T.; Kusumoto, T. In ComprehensiVe Organic Synthesis; Trost,
B. M.; Fleming, I. Eds. Pergamon Oxford 1991;Vol. 8, pp 763-792. (b)
Trost, B. M.; Ball, Z. T. Synthesis 2005, 853.
(15) (a) Matsumoto, H.; Nagashima, S.; Yoshihiro, K.; Nagai, Y. J. Organomet.
Chem. 1975, 85, C1. (b) Azarian, D.; Dua, S. S.; Eaborn, C.; Walton, D.
R. M. J. Organomet. Chem. 1976, 117, C55. (c) Matsumoto, H.; Yoshihiro,
K.; Nagashima, S.; Watanabe, H.; Nagai, Y. J. Organomet. Chem. 1977,
128, 409. (d) Eaborn, C.; Griffiths, R. W.; Pidcock, A. J. Organomet. Chem.
1982, 225, 331. (e) Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1987, 28,
4715. (f) Shirakawa, E.; Kurahashi, T.; Yoshida, H.; Hiyama, T. Chem.
Commun. 2000, 1895.
(16) (a) Yamanoi, Y. J. Org. Chem. 2005, 70, 9607. (b) Hamze, A.; Provot, O.;
Alami, M.; Brion, J.-D. Org. Lett. 2006, 7, 931. (c) Murata, M.; Ohara,
H.; Oiwa, R.; Watanabe, S.; Masuda, Y. Synthesis 2006, 1771. (d) Yamanoi,
Y.; Nishihara, H. Tetrahedron Lett. 2006, 47, 7157.
(17) (a) Sakakura, T.; Tokunaga, Y.; Sodeyama, T.; Tanaka, M. Chem. Lett.
1987, 2375. (b) Ishikawa, M.; Okazaki, S.; Naka, A.; Sakamoto, H.
Organometallics 1992, 11, 4135. (c) Uchimaru, Y.; El Sayed, A. M. M.;
Tanaka, M. Organometallics 1993, 12, 2065. (d) Ezbiansky, K.; Djurovich,
P. I.; LaForest, M.; Sinning, D. J.; Zayes, R.; Berry, D. H. Organometallics
1998, 17, 1455. (e) Kakiuchi, F.; Igi, K.; Matsumoto, M.; Chatani, N.;
Murai, S. Chem. Lett. 2001, 422. (f) Kakiuchi, F.; Igi, K.; Matsumoto, M.;
Hayamizu, T.; Chatani, N.; Murai, S. Chem. Lett. 2002, 396. (g) Kakiuchi,
F.; Matsumoto, M.; Tsuchiya, K.; Igi, K.; Hayamizu, T.; Chatani, N.; Murai,
S. J. Organomet. Chem. 2003, 686, 134. (h) Tsukada, N.; Hartwig, J. F. J.
Am. Chem. Soc. 2005, 127, 5022.
(18) (a) Nakao, Y.; Imanaka, H.; Sahoo, A. K.; Yada, A.; Hiyama, T. J. Am.
Chem. Soc. 2005, 127, 6952. (b) Nakao, Y.; Sahoo, A. K.; Yada, A.; Chen,
J.; Hiyama, T. Sci. Technol. AdV. Mater. 2006, 7, 536. (c) Nakao, Y.;
Imanaka, H.; Chen, J.; Yada, A.; Hiyama, T. J. Organomet. Chem. 2007,
692, 585. (d) Nakao, Y.; Ebata, S.; Chen, J.; Imanaka, H.; Hiyama, T.
Chem. Lett. 2007, 606. For use of these reagents for allylation of aldehydes,
see: (e) Hudrlik, P. F.; Abdallah, Y. M.; Hudrlik, A. M. Tetrahedron Lett.
1992, 33, 6747. (f) Hudrlik, P. F.; Arango, J. O.; Hijji, Y. M.; Okoro, C.
O.; Hudrlik, A. M. Can. J. Chem. 2000, 78, 1421.
(19) For the use of tetraorganosilanes as masked silanols, see: (a)
Denmark, S. E.; Choi, J. Y. J. Am. Chem. Soc. 1999, 121, 5821. (b) Itami,
K.; Nokami, T.; Yoshida, J.-i. J. Am. Chem. Soc. 2001, 123, 5600. (c)
Hosoi, K.; Nozaki, K.; Hiyama, T. Proc. Jpn. Acad. 2002, 78B, 154.
(d) Katayama, H.; Taniguchi, K.; Kobayashi, M.; Sagawa, T.;
Minami, T.; Ozawa, F. J. Organomet. Chem. 2002, 645, 192. (e) Trost,
B. M.; Machacek, M. R.; Ball, Z. T. Org. Lett. 2003, 5, 1895. (f)
Sahoo, A. K.; Oda, T.; Nakao, Y.; Hiyama, T. AdV. Synth. Catal. 2004,
346, 1715.
new entry to silicon-based rhodium-catalyzed 1,4-addition
reactions. We report herein full details of the rhodium-catalyzed
transformations using 1 under mild conditions without any
activators to produce a wide range of adducts in good yields
with excellent chemoselectivities. Enantioselective 1,4-addition
reactions are also demonstrated by the aid of rhodium/chiral
diene catalysis.
Results and Discussion
Rhodium-Catalyzed 1,4-Addition Reactions of Organo-
[2-(hydroxymethyl)phenyl]dimethylsilanes. At the onset, we
assessed the reactivity of 1 by the reaction of phenyl[2-
(hydroxymethyl)phenyl]dimethylsilane (1a) with an excess
amount of methyl vinyl ketone (2a) in the presence of [Rh-
(OH)(cod)]2 as a catalyst (eq 1). The reaction was carried out
in 1,4-dioxane at 30 °C and monitored in a reaction calorimetry
(Omnical SuperCRC).20 Almost quantitative conversion of 1a
was observed after 3 h (curve c, Figure 1), whereas the reaction
trimethoxy(phenyl)silane, a representative silicon reagent fre-
quently used for rhodium-catalyzed transformations,5a-g in the
presence of cationic Rh(cod)(MeCN)2BF4 as a catalyst in 1,4-
dioxane/H2O (10/1)5a showed less than 10% yield of 1,4-adduct
(20) For a review on kinetic studies using calorimetry, see: Blackmond, D. G.
Angew. Chem., Int. Ed. 2005, 44, 4302.
9
9138 J. AM. CHEM. SOC. VOL. 129, NO. 29, 2007