2
184
E. H. Krenske et al. / Tetrahedron Letters 52 (2011) 2181–2184
2
.
(a) Davison, E. C.; Holmes, A. B.; Forbes, I. T. Tetrahedron Lett. 1995, 36, 9047– Am. Chem. Soc. 2007, 129, 10646–10647; (h) Ess, D. H.; Houk, K. N. J. Am. Chem.
9
1
050; (b) Davison, E. C.; Forbes, I. T.; Holmes, A. B.; Warner, J. A. Tetrahedron
996, 52, 11601–11624; For a review: (c) Holmes, A. B.; Bourdin, B.; Collins, I.;
Soc. 2008, 130, 10187–10198.
7. In TSB, the nitrone C-methyl group is on the opposite side of the forming five-
membered ring from the butene methyl groups. This TS is 0.5 kcal/mol higher
Davison, E. C.; Rudge, A. J.; Stork, T. C.; Warner, J. A. Pure Appl. Chem. 1997, 69,
31–536.
(a) LeBel, N. A.; Balasubramanian, N. J. Am. Chem. Soc. 1989, 111, 3363–3368;
b) Williams, G. M.; Roughley, S. D.; Davies, J. E.; Holmes, A. B.; Adams, J. P. J.
à
5
in energy (DDH ) than the TS where the C-methyl group is on the same side as
3
.
the butene methyl groups, but is a better model for the arrangement of groups
in TSD.
(
Am. Chem. Soc. 1999, 121, 4900–4901; (c) Davison, E. C.; Fox, M. E.; Holmes, A.
B.; Roughley, S. D.; Smith, C. J.; Williams, G. M.; Davies, J. E.; Raithby, P. R.;
Adams, J. P.; Forbes, I. T.; Press, N. J.; Thompson, M. J. J. Chem. Soc., Perkin Trans.
8. (a) Huisgen, R.; Sturm, H.-J.; Wagenhofer, H. Z. Naturforsch., B 1962, 17, 202–
203; (b) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 633–645; (c) Huisgen,
R.; Seidl, H.; Brüning, I. Chem. Ber. 1969, 102, 1102–1116.
1
2
2002, 1494–1514; (d) Smith, C. J.; Holmes, A. B.; Press, N. J. Chem. Commun.
002, 1214–1215; (e) Horsley, H. T.; Holmes, A. B.; Davies, J. E.; Goodman, J. M.;
9. (a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241; (b) Zhao, Y.;
Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157–167.
Silva, M. A.; Pascu, S. I.; Collins, I. Org. Biomol. Chem. 2004, 2, 1258–1265; (f)
Brasholz, M.; Macdonald, J. M.; Saubern, S.; Ryan, J. H.; Holmes, A. B. Chem. Eur.
J. 2010, 16, 11471–11480.
10. M06-2X calculations were performed in GAUSSIAN 09: Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.;
Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;
Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada,
M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;
Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.;
Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar,
S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.;
Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann,
R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R.
L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg,
J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.;
Cioslowski, J.; Fox, D. J. GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford
4
5
.
.
Holmes, A. B.; Swithenbank, C.; Williams, S. F. J. Chem. Soc., Chem. Commun.
1
986, 265–266.
GAUSSIAN 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.
E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.;
Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda,
Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;
Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford,
S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez,
C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.
CT, 2009.
11. Values of
à
D
H
at 0 K, calculated from the M06-2X single-point electronic
energies in conjunction with the B3LYP zero-point energies. The B3LYP/6-
à
31G(d) values of
DH at this temperature are 24.9 and 34.7 kcal/mol for TSC
and TSD, respectively. Use of M06-2X with the 6-31G(d) basis set provided
somewhat lower activation energies. Details are provided in the
Supplementary data.
6
.
(a) Cossío, F. P.; Morao, I.; Jiao, H.; Schleyer, P. v. R. J. Am. Chem. Soc. 1999, 121,
6
737–6746; (b) Di Valentin, C.; Freccero, M.; Gandolfi, R.; Rastelli, A. J. Org.
Chem. 2000, 65, 6112–6120; (c) Silva, M. A.; Goodman, J. M. Tetrahedron 2002,
8, 3667–3671; (d) Herrera, R.; Nagarajan, A.; Morales, M. A.; Méndez, F.;
Jiménez-Vázquez, H. A.; Zepeda, L. G.; Tamariz, J. J. Org. Chem. 2001, 66, 1252–
263; (e) Domingo, L. R. Eur. J. Org. Chem. 2000, 2265–2272; (f) Magnuson, E. C.;
Pranata, J. J. Comput. Chem. 1998, 19, 1795–1804; (g) Ess, D. H.; Houk, K. N. J.
12. Replacement of the deleted atoms by Me groups rather than H atoms may have
provided a better model, but the constrained structures possessed imaginary
vibrational frequencies. The fully-optimized TSs corresponding to C-1 and D-1
are geometrically similar to TSA and TSB.
13. Oppolzer, W.; Siles, S.; Snowden, R. L.; Bakker, B. H.; Petrzilka, M. Tetrahedron
1985, 41, 3497–3509.
5
1