Page 3 of 3
ChemComm
50 ‡ Electro-optical polyimide test cell –KSRO-02/A111N1NSS05, cell gap
2 m; Grandjean-Cano wedge KCRK-03, 0.3 mm, tanθ 0.0083. E.H.C.
Co. Ltd.
phase
1. Pu, L., Chem. Rev. 1998, 98, 2405.
2. Bringmann, G.; Price-Mortimer, A. J.; Keller, P. A.; Gresser, M. J.;
55
60
65
70
75
Garner, J.; Breuning, M., Angew. Chem. Int. Ed. 2005, 44, 5384.
3. Deussen, H. J.; Hendrickx, E.; Boutton, C.; Krog, D.; Clays, K.;
Bechgaard, K.; Persoons, A.; Bjornholm, T., J. Am. Chem. Soc. 1996,
118, 6841.
4. Juricek, M.; Kasak, P.; Stach, M.; Putala, M., Tetrahedron Lett. 2007,
48, 8869.
Fig. 4 XRD pattern and 2θ profile of tetramer 2
5. Goh, M.; Kyotani, M.; Akagi, K., J. Am. Chem. Soc. 2007, 129,
8519.
phase (helical twisting power - HTP) is well documented, if not
fully understood.11, 18, 20, 29 Despite the nature of the system, with
the naphthyl planes remaining unlinked and relatively flexible,
the HTP of compounds 1 and 2 were expected to be moderately
high. The HTP of compounds 1 and 2 were determined using a
Grandjean-Cano wedge cell with 4-pentyl-4’-cyanobiphenyl
10 (5CB) as the nematic host (Figure 3d).‡ The HTPs were found to
be 27.9 μm-1 and 40.2 μm-1 for compounds 1 and 2 respectively,
and higher than the majority of the conformationally flexible
dopants previously reported.19, 28 Significantly, the pitch lengths
were found to in the order of 6.4-6.5 μm for a 5% w/w
15 concentration in 5CB. This further indicates that the pitch lengths
for both compounds 1 and 2, in their respective chiral nematic
phases, are substantially shorter.
Characterisation of compounds 1 and 2 was completed by X-
ray diffraction (XRD). Fig. 4 shows the 2θ scan of the recorded
20 intensities in the chiral nematic phase and the original diffraction
pattern. It is noted that the experimental set-up, using capillaries
in a micro furnace with a magnetic field perpendicular to the
direction of the X-ray beam, did not allow for a distinction
between chiral nematic and nematic phase structures. However
25 the alignment in the external field was very limited, with only
two intensities at 2θ = 3.17 (2.77 nm) and 2θ = 18.73 (0.47 nm)
were detected. The position of the reflection did not change to
any extent over the stability range of the liquid crystal phase. The
intensities can be associated with the approximate length of the
30 aromatic groups and the lateral distances of the molecules.
In summary, we have prepared a novel class of organosiloxane
oligopodes, based on an axially chiral binaphthalene core, and
fully characterised their liquid crystalline properties. The
integration of laterally substituted mesogenic units results in the
35 complete suppression of higher ordered liquid crystal phases. The
tetrapodal system 2 represents the first binaphthalene derivative
to display enantiotropic chiral nematic phase behaviour. The
systems also display high helical twist in their respective chiral
nematic phase.
5
6. Goh, M.; Matsushita, S.; Akagi, K., Chem. Soc. Rev. 2010, 39, 2466.
7. Pieraccini, S.; Masiero, S.; Ferrarini, A.; Spada, G. P., Chem. Soc.
Rev. 2011, 40, 258.
8. Lunkwitz, R.; Tschierske, C.; Langhoff, A.; Giesselmann, F.;
Zugenmaier, P., J. Mat. Chem. 1997, 7, 1713.
9. Zab, K.; Kruth, H.; Tschierske, C., Chem. Commun. 1996, 977.
10. Ayub, K.; Moran, M.; Lazar, C.; Lemieux, R. P., J. Mat. Chem. 2010,
20, 6655.
11. di Matteo, A.; Todd, S. M.; Gottarelli, G.; Solladie, G.; Williams, V.
E.; Lemieux, A.; Ferrarini, A.; Spada, G. P., J. Am. Chem. Soc. 2001,
123, 7842.
12. Yang, K.; Campbell, B.; Birch, G.; Williams, V. E.; Lemieux, R. P.,
J. Am. Chem. Soc. 1996, 118, 9557.
13. Akagi, K., Chem. Rev. 2009, 109, 5354.
14. Goh, M.; Akagi, K., Liq. Cryst. 2008, 35, 953.
15. Rokunohe, J.; Yoshizawa, A., J. Mat. Chem. 2005, 15, 275.
16. Yoshizawa, A., J. Mat. Chem. 2008, 18, 2877.
80 17. Yoshizawa, A.; Kogawa, Y.; Kobayashi, K.; Takanishi, Y.;
Yamamoto, J., J. Mat. Chem. 2009, 19, 5759.
18. Celebre, G.; De Luca, G.; Maiorino, M.; Lemma, F.; Ferrarini, A.;
Pieraccini, S.; Spada, G. P., J. Am. Chem. Soc. 2005, 127, 11736.
19. Feringa, B. L.; Eelkema, R., Org. Biomol. Chem. 2006, 4, 3729.
85 20. Gottarelli, G.; Hibert, M.; Samori, B.; Solladie, G.; Spada, G. P.;
Zimmermann, R. G., J. Am. Chem. Soc. 1983, 105, 7381.
21. Pieraccini, S.; Ferrarini, A.; Spada, G. P., Chirality 2008, 20, 749.
22. Solladie, G.; Zimmermann, R. G., Angew. Chem. Int. Ed. 1984, 23,
348.
90 23. Cruz, C.; Figueirinhas, J. L.; Filip, D.; Feio, G.; Ribeiro, A. C.; Frere,
Y.; Meyer, T.; Mehl, G. H., Phys. Rev. E 2008, 78.
24. Filip, D.; Cruz, C.; Sebastiao, P. J.; Cardoso, M.; Ribeiro, A. C.;
Vilfan, M.; Meyer, T.; Kouwer, P. H. J.; Mehl, G. H., Phys. Rev. E
2010, 81.
95 25. Merkel, K.; Kocot, A.; Vij, J. K.; Mehl, G. H.; Meyer, T., Phys. Rev.
E 2006, 73.
40
We thank the EPSRC National Mass Spectrometry Service
Centre for their support. This work was supported through the EU
7th Framework Program NANOGOLD.
26. Diez, S.; Dunmur, D. A.; De La Fuente, M. R.; Karahaliou, P. K.;
Mehl, G. H.; Meyer, T.; Jubindo, M. A. P.; Photinos, D. J., Liq.
Cryst. 2003, 30, (9), 1021.
Notes and references
a Department of Chemistry, University of Hull, Hull, UK, HU6 7RX. Fax:
100 27 Yu, C. H.; Schubert, C. P. J.; Welch, C.; Tang, B. J. Tamba, M. G.;
Mehl, G. H.; J. Am. Chem. Soc. 2012, 134, 5076.
45 +44 (0) 1482466410; Tel: +44 (0) 1482465590; E-mail:
† Electronic Supplementary Information (ESI) available: Full
experimental procedures, data and liquid crystal properties. See
DOI: 10.1039/b000000x/
28. Wu, X.; Yu, L.; Cao, H.; Guo, R.; Li, K.; Cheng, Z.; Wang, F.; Yang,
Z.; Yang, H., Polymer 2011, 52, 5836.
29. Proni, G.; Spada, G. P.; Lustenberger, P.; Welti, R.; Diederich, F., J.
105
Org. Chem. 2000, 65, 5522.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3