612
M. J. McLaughlin et al. / Tetrahedron Letters 42 (2001) 609–613
S. W.; Perchellet, E. M.; Ladesich, J. B.; Freeman, J. A.;
were assigned by direct correlations with 14 using 1H NMR.
14. For electrocyclic ring closure involving 1-azatrienes, see:
(a) Maynard, D. F.; Okamura, W. H. J. Org. Chem.
1995, 60, 1763. (b) Okamura, W. H.; de Lera, A. R.;
Reischl, W. J. Am. Chem. Soc. 1988, 110, 4462.
15. For electrocyclic ring closure involving 1-oxatrienes, see:
(a) Kametani, T.; Kajiwara, M.; Fukumoto, K. Tetra-
hedron 1974, 30, 1053. (b) Shishido, K.; Ito, M.; Shimada,
S.-I.; Fukumoto, K.; Kametani, T. Chem. Lett. 1984,
1943.
Perchellet, J.-P.; Chiang, P. K. J. Org. Chem. 1997, 62, 6888.
(b) Jonassohn, M.; Sterner, O.; Anke, H. Tetrahedron 1996,
52, 1473. (c) Appendino, G.; Cravotto, G.; Tagliapietra, S.;
Nano, G. M.; Palmisano, G. Helv. Chim. Acta 1990, 73,
1865.
2. For some earlier studies, see: (a) de March, P.; Moreno-
Man˜as, M.; Casado, J.; Pleixats, R.; Roca, J. L.; Trius, A.
J. Heterocyclic Chem. 1984, 21, 1369. (b) Tietze, L. F.; v.
Kiedrowski, G.; Berger, B. Synthesis 1982, 683. (c) de
Groot, A.; Jansen, B. J. M. Tetrahedron Lett. 1975, 16,
3407.
3. Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993,
32, 131.
4. For reviews on metal mediated [3+3] cycloaddition reac-
tions, see: (a) Fru¨hauf, H.-W. Chem. Rev. 1997, 97, 523.
(b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96,
49.
5. For a recent review on step-wise [3+3] carbocyclizations
using enamines, enol ethers, or b-ketoesters, see: Filippini,
M.-H.; Rodriguez, J. Chem. Rev. 1999, 99, 27–76.
6. (a) Hsung, R. P.; Shen, H. C.; Douglas, C. J.; Morgan, C.
D.; Degen, S. J.; Yao, L. J. J. Org. Chem. 1999, 64, 690.
(b) Douglas, C. J.; Sklenicka, H. M.; Shen, H. C.; Golding,
G. M.; Mathias, D. S.; Degen, S. J.; Morgan, C. D.; Shih,
R. A.; Mueller, K. L.; Seurer, L. M.; Johnson, E. W.;
Hsung, R. P. Tetrahedron 1999, 55, 13683. (c) Zehnder, L.
R.; Dahl, J. W.; Hsung, R. P. Tetrahedron Lett. 2000, 41,
1901.
7. Hsung, R. P.; Wei, L.-L.; Sklenicka, H. M.; Douglas, C.
J.; McLaughlin, M. J.; Mulder, J. A.; Yao, L. J. Org. Lett.
1999, 1, 509.
8. (a) Zehnder, L. R.; Hsung, R. P.; Wang, J.-S.; Golding, G.
M. Angew. Chem., Int. Ed. Eng. 2000, 39, 3876. (b)
McLaughlin, M. J.; Hsung, R. P. J. Org. Chem. 2000, 65,
in press.
16. For
a review on rotational preferences leading to
diastereomeric induction during a 6p-electron electro-
cyclic ring closure, see: Okamura, W. H.; de Lera, A. R.
Comprehensive Organic Synthesis; Trost, B. M.; Fleming,
I., Eds.; Paquette, L. A., volume editor; Pergamon:
Oxford, 1991; Vol. 5, pp. 699–750.
17. For some examples involving torquoselective processes,
see: (a) Giese, S.; Kastrup, L.; Stiens, D.; West, F. G.
Angew. Chem., Int. Ed. Engl. 2000, 39, 1970. (b) Hsung,
R. P.; Quinn, J. F.; Weisenberg, B. A.; Wulff, W. D.;
Yap, G. P. A.; Rheingold, A. L. J. Chem. Soc., Chem.
Commun. 1997, 615.
18. (a) Cvetovich, R. J. Diss. Abstr. Int. B 1979, 39(8), 3837;
Chem. Abstr. 1979, 90, 186758q. (b) Tanner, D.; Hag-
berg, L.; Poulsen, A. Tetrahedron 1999, 55, 1427.
19. Characterizations of selected new compounds: 10: mp=
91–92°C, Rf=0.40 (silica gel, 25% ethyl acetate/hexane);
1H NMR (300 MHz, CDCl3): isomer a l 6.41 (d, 1H,
J=10.2 Hz), 5.85 (s, 1H), 5.20 (d, 1H, J=10.2 Hz), 2.21
(s, 3H), 2.17 (m, 1H), 1.43–1.79 (m, 6H), 1.21–1.39 (m,
2H), 0.93 (d, 3H, J=3.3 Hz); isomer b l 6.49 (d, 1H,
J=10.2 Hz), 5.62 (s, 1H), 5.58 (d, 1H, J=10.2 Hz), 2.21
(s, 3H), 2.19 (m, 1H), 1.43–1.79 (m, 6H), 1.21–1.39 (m,
2H), 0.91 (d, 3H, J=3.3 Hz); 13C NMR (75 MHz,
CDCl3): isomer a l 164.6, 162.3, 124.7, 116.9, 100.3, 86.0,
83.6, 41.1, 40.5, 37.0, 30.6, 28.9, 25.4, 20.2, 16.6; isomer b
l 165.1, 162.5, 119.3, 118.0, 110.3, 100.2, 97.9, 40.1, 38.7,
28.4, 25.0, 22.0, 20.1, 18.3, 16.2; IR (thin film) cm−1
2932(s), 2855(s), 1716(s), 1646(s), 1560(s), 1447(m),
1387(m); mass spectrum (EI): m/e (% relative intensity)
246 (50) M+, 203 (25), 190 (16), 189 (100), 176 (14);
HRMS (EI): m/e calculated for C15H18O3: 246.3042, mea-
sured 246.1257; anal. calcd for C15H18O3: C, 73.15; H,
7.37; found: C, 72.99; H, 7.24. 13: Rf=0.54 (silica gel,
9. Sklenicka, H. M.; Hsung, R. P.; Wei, L.-L.; McLaughlin,
M. J.; Gerasyuto, A. I.; Degen, S. J.; Mulder, J. A. Org.
Lett. 2000, 2, 1161.
10. For a related review, see: Kotera, M. Bull. Soc. Chim. Fr.
1989, 370.
11. The cycloalkylidene a,b-unsaturated aldehydes 5–7 and 9
were prepared from their corresponding cyclohexanones
in three steps: (1) Wittig olefination using (EtO)2PCH2-
COOEt, (2) Dibal-H reduction, and (3) Ley’s TPAP or
Dess–Martin oxidation. The aldehyde 8 was prepared
from 2-t-Bu-cyclohexanone in two steps: (1) vinylmagne-
siumbromide, and (2) PCC oxidation.
1
50% ethyl acetate/hexane); H NMR (300 MHz, CDCl3):
isomer a l 6.38 (d, 1H, J=10.2 Hz), 5.80 (s, 1H), 5.78 (d,
1H, J=10.2 Hz), 2.20 (s, 3H), 2.04 (m, 1H), 1.58–1.77
(m, 2H), 1.53–1.58 (m, 2H), 1.40–1.43 (m, 2H), 1.24–1.30
(m, 2H), 0.94 (s, 9H); isomer b 6.22 (d, 1H, J=10.2 Hz),
5.70 (s, 1H), 5.46 (d, 1H, J=10.2 Hz), 2.21 (s, 3H), 2.04
(m, 1H), 1.58–1.77 (m, 2H), 1.53–1.58 (m, 2H), 1.40–1.43
(m, 2H), 1.24–1.30 (m, 2H), 0.98 (s, 9H); 13C NMR (75
MHz, CDCl3): isomer a l 171.1, 163.8, 162.5, 162.5,
121.1, 115.8, 100.4, 86.8, 55.0, 54.4, 42.9, 29.7, 29.4, 27.6,
26.8, 26.3, 22.1, 20.3; isomer b l 168.5, 163.1, 162.6,
162.1, 129.1, 112.7, 100.4, 84.4, 55.0, 53.9, 39.8, 30.4,
27.8, 26.1, 25.6, 23.5, 20.2; IR (neat) cm−1 2938(s),
2866(s), 2360(w), 1716(s), 1645(s), 1563(s), 1447(m),
1321(m); mass spectrum (EI): m/e (% relative intensity)
288 (22) M+, 273 (5), 231 (12), 190 (15), 189 (100); anal.
calcd for C18H24O3: C, 74.97; H, 8.39; found: C, 74.74; H,
8.50. 14: isomer a: mp=65–67°C, Rf=0.71 (silica gel,
50% ethyl acetate/hexane); isomer b: mp=85°C, Rf=0.60
(silica gel, 50% ethyl acetate/hexane); 1H NMR (300
1
12. All new compounds are characterized by H NMR, 13C
NMR, FTIR, and mass spectroscopy. See Ref. 19 for
spectroscopic and physical characterization of selected new
compounds.
13. nOe experiments were carried out on pure isomers 14a and
14b. The following observations were made. Compounds