recognition of modified amino acids has been reported in
recent years,4 recognizing unprotected amino acids in
protic solvent is still a challenge and only a few works
have been reported to date.5 Unlike other organic guest
molecules, most amino acids exist as zwitterions and have
poor solubility in aprotic organic solvent,6 whereas in
protic solvent the competition between solvent molecules
and binding sites exists, not only preventing the formation
ofH-bonds betweenreceptorsand guestmolecules butalso
resulting in low enantioselectivity.1a,7
Scheme 1. Synthesis Route of 1
Perazamacrocycles have been successfully applied in
coordination chemistry, metal catalysis, ion recognition,
supramolecular structures, material chemistry, and catalysis.8
Recently, the research on the fluorescent and colori-
metric molecular probes or chemosensors based on poly-
amines has prospered.9 On the other hand, optically active
1,10-Bi-2-naphthol (BINOL) and trans-cyclohexane-1,
2-diamine (trans-DACH) and their derivatives have been
widely used in molecular recognition and asymmetric
catalysis.10 And some excellent enantioselective fluorescence
sensors based on the building blocks of BINOL derivatives
have been reported since chiral BINOL can effectively
integrate chirality and the fluorescence property.4b,11
In this paper, we synthesized a novel chiral perazama-
crocycle 1 featuring BINOL and trans-DACH units which
could serve as a fluorescent sensor for Cu(II). And the
chiral recognition of the Cu(II)-containing complex of 1
toward unmodified R-amino acids in protic solutions was
studied.
(4) For examples: (a) He, X. A.; Zhang, Q.; Wang, W. T.; Lin, L. L.;
Liu, X. H.; Feng, X. M. Org. Lett. 2011, 13, 804. (b) Liu, H. L.; Zhu,
H. P.; Hou, X. L.; Pu, L. Org. Lett. 2010, 12, 4172. (c) He, X.; Cui, X.; Li,
M. S.; Lin, L. L.; Liu, X. H.; Feng, X. M. Tetrahedron Lett. 2009, 50,
5853. (d) Huang, X. H.; He, Y. B.; Hu, C. G.; Chen, Z. H. J. Fluoresc.
2009, 19, 97. (e) Wang, H.; Chan, W. H.; Lee, A. W. M. Org. Biomol.
Chem. 2008, 6, 929. (f) Qin, H. J.; He, Y. B.; Qing, G. Y.; Hu, C. G.;
Yang, X. Tetrahedron: Asymmetry 2006, 17, 2143. (g) Ikeda, H.; Li, Q.;
Ueno, A. Bioorg. Med. Chem. Lett. 2006, 16, 5420. (h) Lin, J.; Li, Z. B.;
Zhang, H. C.; Pu, L. Tetrahedron Lett. 2004, 45, 103. (i) Wong, W. L.;
Huang, K. H.; Teng, P. F.; Lee, C. S.; Kwong, H. L. Chem. Commun.
2004, 4, 384. (j) Alfonso, I.; Burguete, M. I.; Galindo, F.; Luis, S. V.;
Vigara, L. J. Org. Chem. 2009, 74, 6130. (k) Kim, Y. K.; Lee, H. N.;
Singh, N. J.; Choi, H. J.; Xue, J. Y.; Kim, K. S.; Yoon, J.; Hyun, M. H.
J. Org. Chem. 2008, 73, 301. (l) Ragusa, A.; Hayes, J. M.; Light, M. E.;
Kilburn, J. D. Chem.;Eur. J. 2007, 13, 2717. (m) Rossi, S.; Kyne, G. M.;
Turner, D. L.; Wells, N. J.; Kilburn, J. D. Angew. Chem., Int. Ed. 2002,
41, 4233.
(5) (a) Leung, D.; Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn,
E. V. J. Am. Chem. Soc. 2008, 130, 12318. (b) Nicolas, I.; Chevance, S.;
Le Maux, P.; Simonneaux, G. Tetrahedron: Asymmetry 2010, 21, 1788.
(c) Yang, L.; Qin, S.; Su, X. Y.; Yang, F.; You, J. S.; Hu, C. W.; Xie,
R. G.; Lan, J. B. Org. Biomol. Chem. 2010, 8, 339. (d) Imai, H.;
Munakata, H.; Uemori, Y.; Sakura, N. Inorg. Chem. 2004, 43, 1211.
(e) Andini, S.; Castronuovo, G.; Elia, V.; Pignone, A.; Velleca, F.
J. Solution Chem. 1996, 25, 837. (f) Zhu, B. X.; Ruan, W. J.; Gao, F.;
Hu, G. H.; Zhu, Z. A. Acta Chim. Sin. 2004, 62, 58.
As shown in Scheme 1, perazamacrocycle 1 was easily
synthesized in 3 steps from (S)-BIONL.
The UVꢀvis and fluorescence spectra of perazamacro-
cycle 1 at various concentrations were studied (Figures
S3ꢀS4). The UVꢀvis spectra of 1 have no change in either
the wavelengths or the shapes of the absorption signals and
obey the LambertꢀBeer Law well as the concentration
increases from 0 to2.5 ꢁ 10ꢀ5 mol/L, indicating that1 does
not form ground state intermolecular aggregates.12 How-
ever, plots of fluorescent intensity vs concentration of 1
suggest that the suitable concentration of 1 for the fluor-
escent studies on recognition preferably should not be
greater than 1 ꢁ 10ꢀ5 mol/L to avoid the violation of the
LambertꢀBeer Law.
(6) (a) Ji, P. J.; Zou, J. X.; Feng, W. J. Mol. Catal. B: Enzym. 2009, 56,
185. (b) Gekko, K.; Ohmae, E.; Kameyama, K.; Takagi, T. Biochim.
Biophys. Acta, Protein Struct. Mol. Enzymol. 1998, 1387, 195. (c) Nash,
C. P.; Cook, D. B.; Pye, E. L. J. Phys. Chem. 1963, 67, 1642. (d) Fuchs,
D.; Fischer, J.; Tumakaka, F.; Sadowski, G. Ind. Eng. Chem. Res. 2006,
45, 6578. (e) Needham, T. E.; Paruta, A. N.; Gerraugh, R. J. J. Pharm.
Sci. 1971, 60, 565. (f) Cohn, E. J.; McMeekin, T. L.; Edsall, J. T.; Weare,
J. H. J. Am. Chem. Soc. 1934, 56, 2270.
We investigated the selective fluorionophoric prop-
erties of 1 toward Liþ, Naþ, Kþ, Ca2þ, Cr3þ, Fe3þ
Co2þ, Ni2þ Cu2þ, Zn2þ, Pb2þ, Agþ, Cd2þ, and Ba2þ
,
.
(7) (a) Dalko, P. I. Enantioselective Organocatalysis; WILEY-VCH
Verlag GmbH & Co. KGaA: Weinheim, 2007. (b) Oshovsky, G. V.;
Reinhoudt, D. N.; Verboom, W. Angew. Chem., Int. Ed. 2007, 46, 2366.
(8) (a) Fabbrizzi, L.; Licchelli, M.; Mosca, L.; Poggi, A. Coord.
Chem. Rev. 2010, 254, 1628. (b) Savoia, D.; Gualandi, A. Curr. Org.
Synth. 2009, 6, 102. (c) Savoia, D.; Gualandi, A. Curr. Org. Synth. 2009,
6, 119. (d) Creaven, B. S.; Donlon, D. F.; McGinley, J. Coord. Chem.
Rev. 2009, 253, 893. (e) Oueslati, I. Tetrahedron 2007, 63, 10840.
(f) Geduhn, J.; Walenzyk, T.; Konig, B. Curr. Org. Synth. 2007, 4,
390. (g) Even, P.; Boitrel, B. Coord. Chem. Rev. 2006, 250, 519. (h) Liang,
X. Y.; Sadler, P. J. Chem. Soc. Rev. 2004, 33, 246. (i) McAuley, A.;
Subramanian, S. Coord. Chem. Rev. 2000, 200, 75. (j) Mitewa, M.;
Bontchev, P. R. Coord. Chem. Rev. 1994, 135, 129. (k) Krakowiak, K. E.;
Bradshaw, J. S.; Zameckakrakowiak, D. J. Chem. Rev. 1989, 89, 929.
(9) (a) Lodeiro, C.; Capelo, J. L.; Mejuto, J. C.; Oliveira, E.; Santos,
H. M.; Pedras, B.; Nunez, C. Chem. Soc. Rev. 2010, 39, 2948.
(b) Shokeen, M.; Anderson, C. J. Acc. Chem. Res. 2009, 42, 832.
(c) Descalzo, A. B.; Rurack, K. Chem.;Eur. J. 2009, 15, 3173.
(d) Ford, P. C. Acc. Chem. Res. 2008, 41, 190. (e) Gouanve, F.; Schuster,
T.; Allard, E.; Meallet-Renault, R.; Larpent, C. Adv. Funct. Mater. 2007,
17, 2746.
The fluorescence of 1 could be almost completely
quenched only by Cu(NO3)2 (Figures 1 and 2). Job
plots13 analysis and the mass spectra of ESI and
(10) (a) Alfonso, I. Curr. Org. Synth. 2010, 7, 1. (b) Bennani, Y. L.;
Hanessian, S. Chem. Rev. 1997, 97, 3161. (c) Michel, B. J. Chem. Rev.
2005, 105, 857. (d) Ding, K.; Guo, H.; Li, X.; Yuan, Y.; Wang, Y. Top.
Catal. 2005, 35, 105. (e) Pu, L. Chem. Rev. 1998, 98, 2405.
(11) (a) Yu, S. S.; Pu, L. J. Am. Chem. Soc. 2010, 132, 17698. (b) Liu,
H. L.; Peng, Q.; Wu, Y. D.; Chen, D.; Hou, X. L.; Sabat, M.; Pu, L.
Angew. Chem., Int. Ed. 2010, 49, 602. (c) Chen, X.; Huang, Z.; Chen, S.-
Y.; Li, K.; Yu, X.-Q.; Pu, L. J. Am. Chem. Soc. 2010, 132, 7297.
(d) Wang, Q.; Chen, X.; Tao, L.; Wang, L.; Xiao, D.; Yu, X. Q.; Pu,
L. J. Org. Chem. 2007, 72, 97. (e) Li, Z. B.; Lin, J.; Sabat, M.; Hyacinth,
M.; Pu, L. J. Org. Chem. 2007, 72, 4905. (f) James, T. D.; Sandanayake,
K.; Shinkai, S. Nature 1995, 374, 345. (g) Xu, Y.; Zheng, L. F.; Huang,
X. B.; Chen, Y. X.; Zhu, C. J. Polymer 2010, 51, 994.
(12) Li, Z. B.; Pu, L. J. Mater. Chem. 2005, 15, 2860.
Org. Lett., Vol. 13, No. 13, 2011
3511