216
L. B. Krivdin et al.
Experimental
[4] (a) L. B. Krivdin, N. A. Scherbina, N. V. Istomina, Magn. Reson.
Chem. 2005, 43, 435. doi:10.1002/MRC.1572
Synthesis
(b)L. B. Krivdin, L. I. Larina, K.A. Chernyshev, I. B. Rozentsveig,
Magn. Reson. Chem. 2005, 43, 937. doi:10.1002/MRC.1645
(c) L. B. Krivdin, N.A. Nedolya,Tetrahedron Lett. 2005, 46, 7367.
doi:10.1016/J.TETLET.2005.08.118
Methylglyoxal bis-N,N-dimethylhydrazone 2 was prepared by adding
0.36 g (0.02 M) of water, 0.002 g of hydroxyquinone, and 0.12 g of
a catalyst to 2 g (0.02 M) of 2-ethoxypropenal dissolved in 65 mL of
acetonitrile (pH 2). The catalyst was prepared by dissolving 0.5 mL of
concentrated HCl in 1 mL of acetonitrile. The mixture was heated at
60◦C for 50 min and then cooled. Freshly calcined 4 Å molecular sieves
(1.5 mL) and 4.58 g (0.078 M) of dimethylhydrazine were added and the
mixture was stirred for 2 h and allowed to stand overnight.After distilla-
tion under argon flow, compound 2 was obtained in 65% yield, bp 55◦C
(1 mmHg). δC (100.61 MHz, CDCl3) isomer EE (major, ca. 75%): 12.24
(C1), 41.88 (NNMe2 at C3), 46.71 (NNMe2 at C2), 132.21 (C3), 162.56
(C2); isomer ZE (minor, ca. 25%): 18.77 (C1), 41.71 (NNMe2 at C3),
47.26 (NNMe2 at C2), 132.65 (C3), 161.36 (C2). The assignment of C1,
C2, and C3 are shown in Fig. 1.
[5] (a) V. Barone, J. E. Peralta, R. H. Contreras, A. V. Sosnin,
L. B. Krivdin, Magn. Reson. Chem. 2001, 39, 600. doi:10.1002/
MRC.901
(b) L. B. Krivdin, S. V. Zinchenko, V. V. Shcherbakov,
G. A. Kalabin, R. H. Contreras, M. F. Tufro, M. C. Ruiz de Azua,
C. G. Giribet, J. Magn. Reson. 1989, 84, 1.
(c) R. H. Contreras, C. G. Giribet, M. C. Ruiz de Azua,
C. N. Cavasotto, L. B. Krivdin, J. Mol. Struct. Theochem. 1990,
210, 175. doi:10.1016/0166-1280(90)80039-Q
(d) L. B. Krivdin, S. V. Zinchenko, G. A. Kalabin,
M. F. Tufro, R. H. Contreras, A. Yu. Denisov, O. A. Gavrilyuk,
V. I. Mamatyuk, J. Chem. Soc., Faraday Trans. 1992, 88, 2459.
doi:10.1039/FT9928802459
NMR Measurements
[6] (a) E. Juaristi, G. Cuevas, A. Vela, J. Am. Chem. Soc. 1994, 116,
5796. doi:10.1021/JA00092A034
13C NMR spectra were recorded on a Bruker AVANCE 400 MHz spec-
trometer in a 10 mm broadband probe at 300 K in CDCl3 with HMDS
as an internal standard. Carbon–carbon coupling constants were mea-
sured at 25◦C in CDCl3 from the 13C satellites in the proton-decoupled
13C NMR spectra and also using the INADEQUATE[14] pulse sequence
adjusted for J 45 and 70 Hz. Settings for the INADEQUATE experi-
ments were as follows: 90◦ pulse length: 12–14 µs, spectroscopic width:
10–15 kHz, acquisition time: 4–6 s, relaxation delay: 6–10 s, character-
istic delay τ 1/4J: 5.6 and 3.6 ms, digital resolution: 0.05–0.1 Hz per
point, accumulation time: 12 h. Carbon–hydrogen coupling constants
were measured from the proton-coupled 13C NMR spectra using the
same spectroscopic widths, acquisition times, relaxation delays, and
digital resolutions as in the INADEQUATE experiments.
(b) G. Cuevas, E. Juaristi, A. Vela, J. Phys. Chem. A 1999, 103,
932. doi:10.1021/JP983664S
(c) G. Cuevas, E. Juaristi, J. Am. Chem. Soc. 2002, 124, 13088.
doi:10.1021/JA020317U
[7] (a) E. S. Nielsen, P. Jørgensen, J. Oddershede, J. Chem. Phys.
1980, 73, 6238. doi:10.1063/1.440119
(b) M. J. Packer, E. K. Dalskov, T. Enevoldsen, H. J. A. Jensen,
J. Oddershede, J. Chem. Phys. 1996, 105, 5886. doi:10.1063/
1.472430
(c)T. Enevoldsen, J. Oddershede, S. P.A. Sauer,Theo. Chem.Acc.
1998, 100, 275.
(d) K. L. Bak, H. Koch, J. Oddershede, O. Christiansen,
S. P. A. Sauer, J. Chem. Phys. 2000, 112, 4173. doi:10.1063/
1.480963
Computational Methods
ˇ
[8] (a)J. Cížek, J. Chem. Phys. 1966, 45, 4256. doi:10.1063/1.1727484
Geometrical optimizations were performed with the GAMESS code,[15]
at the MP2 level,[16] with the 6-311G** basis set of Pople and
co-workers.[17] Calculations of spin–spin coupling constants were car-
ried out using the DALTON package[18] at the SOPPA(CCSD) level[9]
with the correlation-consistent basis set cc-pVDZ[10] augmented with
the core s-functions cc-pVDZ-Cs of Woon and Dunning[11] on coupled
carbons and aug-cc-pVTZ-J of Sauer et al.[12] on coupled hydrogens,
as described elsewhere.[13] In all calculations no symmetry constraints
were applied assuming the C1 symmetry point group throughout.
ˇ
(b) J. Cížek, J. Paldus, Int. J. Quantum Chem. 1971, 5, 359.
doi:10.1002/QUA.560050402
(c) G. D. Purvis, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910.
doi:10.1063/1.443164
(d) H. Koch, O. Christiansen, R. Kobayashi, P. Jørgensen,
T. Helgaker, Chem. Phys. Lett. 1994, 228, 233. doi:10.1016/
0009-2614(94)00898-1
(e) H. Koch, A. Sánchez de Merás, T. Helgaker, O. Christiansen,
J. Chem. Phys. 1996, 104, 4157. doi:10.1063/1.471227
[9] (a) S. P. A. Sauer, J. Phys. B 1997, 30, 3773. doi:10.1088/0953-
4075/30/17/007
Acknowledgments
(b) T. Enevoldsen, J. Oddershede, S. P. A. Sauer, Theor. Chem.
Acc. 1998, 100, 275.
[10] (a)T. H. Dunning, Jr, J. Chem. Phys. 1989, 90, 1007. doi:10.1063/
1.456153
Financial support of the Russian Foundation for Basic
Research(grantno. 05-03-32231)isgratefullyacknowledged.
(b) R. A. Kendall, T. H. Dunning, Jr, R. J. Harrison, J. Chem.
Phys. 1992, 96, 6796. doi:10.1063/1.462569
(c) D. E. Woon, T. H. Dunning, Jr, J. Chem. Phys. 1993, 98, 1358.
doi:10.1063/1.464303
References
[1] (a) S. Ekelund, P. Nygren, R. Larsson, Biochem. Pharm. 2001,
61, 1183. doi:10.1016/S0006-2952(01)00570-6
(b) N. A. Keiko, T. N. Mamashvili, Khim. Farm. Zh. (Russ.) 2005,
39, 28.
[11] D. E. Woon, T. H. Dunning, Jr, J. Chem. Phys. 1995, 103, 4572.
doi:10.1063/1.470645
(c) M. Salvi, A. Toninello, Biochem. Pharm. 2002, 63, 247.
doi:10.1016/S0006-2952(01)00827-9
[12] P. F. Provasi, G. A. Aucar, S. P. A. Sauer, J. Chem. Phys. 2001,
115, 1324. doi:10.1063/1.1379331
[2] T. N. Mamashvili, N. A. Keiko, G. I. Sarapulova, M. G. Voronkov,
Izv. AN SSSR, Ser. Khim. (Russ.) 1998, 2547.
[3] (a) L. B. Krivdin, G.A. Kalabin, R. N. Nesterenko, B.A.Trofimov,
Tetrahedron Lett. 1984, 25, 4817. doi:10.1016/S0040-4039(01)
81528-8
[13] (a) L. B. Krivdin, S. P. A. Sauer, J. E. Peralta, R. H. Contreras,
Magn. Reson. Chem. 2002, 40, 187. doi:10.1002/MRC.989
(b) L. B. Krivdin, Magn. Reson. Chem. 2003, 41, 91. doi:10.1002/
MRC.1135
(c) L. B. Krivdin, Magn. Reson. Chem. 2003, 41, 157.
doi:10.1002/ MRC.1152
(d) L. B. Krivdin, Magn. Reson. Chem. 2003, 41, 417.
doi:10.1002/ MRC.1198
(b)G.A. Kalabin, L. B. Krivdin,V.V. Shcherbakov, B.A.Trofimov,
J. Mol. Struct. 1986, 143, 569. doi:10.1016/0022-2860(86)
85327-3
(c) L. B. Krivdin, V. V. Shcherbakov, G. A. Kalabin, Russ. J. Org.
Chem. Engl. Transl. 1986, 22, 300.
(e) L. B. Krivdin, Magn. Reson. Chem. 2003, 41, 885.
doi:10.1002/ MRC.1267