Full Paper
[6]
[7]
D. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed. 2003, 42, 268–297; Angew.
Chem. 2003, 115, 278.
[Ho4(LH2)4(μ2-OH)4]·MeOH·8H2O (3): Quantities: LH4 (0.041 g,
0.13 mmol), Ho(NO3)3·5H2O (0.053 g, 0.13 mmol), Et3N (0.051 mL,
0.39 mmol), yield 0.04 g, 57.06 % (based on Ho3+), m.p. 200 °C (de-
a) T. Glaser, Chem. Commun. 2011, 47, 116–130; b) R. Inglis, L. F. Jones,
G. Karotsis, A. Collins, S. Parsons, S. P. Perlepes, W. Wernsdorfer, E. K.
Brechin, Chem. Commun. 2008, 5924–5296; c) D. W. Boukhvalov, V. V.
Dobrovitski, P. Kogerler, M. Al-Saqer, M. I. Katsnelson, A. I. Lichtenstein,
B. N. Harmon, Inorg. Chem. 2010, 49, 10902–10906; d) H. Xu, Q. Wang,
J.-H. Qin, S.-Q. Zang, S. K. Langley, K. S. Murray, B. Moubaraki, S. R. Batten,
T. C. W. Mak, Chem. Commun. 2015, 51, 12716–12719; e) J. Liu, M. Qu, R.
Clerac, X. M. Zhang, Chem. Commun. 2015, 51, 7356–7359; f) W. Guo, J.
Bacsa, J. van Leusen, K. P. Sullivan, H. Lv, P. Kogerler, C. L. Hill, Inorg. Chem.
2015, 54, 10604–10609; g) O. Botezat, J. van Leusen, V. Ch. Kravtsov, A.
Ellern, P. Kögerler, S. G. Baca, Dalton Trans. 2015, 44, 20753–20762; h)
A. K. Bar, C. Pichon, J.-P. Sutter, Coord. Chem. Rev. 2016, 308, 346–380.
a) S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba, J. Mrozinski, J. Am.
Chem. Soc. 2004, 126, 420–421; b) G. P. Guedes, S. Soriano, L. A. Mer-
cante, N. L. Speziali, M. A. Novak, M. Andruh, M. G. Vaz, Inorg. Chem.
2013, 52, 8309–8311; c) C. M. Zaleski, E. C. Depperman, J. W. Kampf, M. L.
Kirk, V. L. Pecoraro, Angew. Chem. Int. Ed. 2004, 43, 3912–3914; Angew.
Chem. 2004, 116, 4002; d) O. Iasco, G. Novitchi, E. Jeanneau, D. Luneau,
Inorg. Chem. 2013, 52, 8723–8731; e) T. K. Prasad, M. V. Rajasekharan,
J. P. Costes, Angew. Chem. Int. Ed. 2007, 46, 2851–2854; Angew. Chem.
2007, 119, 2909; f) S. M. Abtab, M. C. Majee, M. Maity, J. Titis, R. Boca,
M. Chaudhury, Inorg. Chem. 2014, 53, 1295–1306; g) V. Chandrasekhar,
S. Das, A. Dey, S. Hossain, S. Kundu, E. Colacio, Eur. J. Inorg. Chem. 2014,
397–406; h) V. Chandrasekhar, S. Das, A. Dey, S. Hossain, F. Lloret, E.
Pardo, Eur. J. Inorg. Chem. 2013, 4506–4514; i) V. Chandrasekhar, P. Bag,
M. Speldrich, J. van Leusen, P. Kogerler, Inorg. Chem. 2013, 52, 5035–
5044; j) A. Deb, T. T. Boron, M. Itou, Y. Sakurai, T. Mallah, V. L. Pecoraro,
J. E. Penner-Hahn, J. Am. Chem. Soc. 2014, 136, 4889–4892; k) C. M.
Zaleski, J. W. Kampf, T. Mallah, M. L. Kirk, V. L. Pecoraro, Inorg. Chem.
2007, 46, 1954–1956; l) V. Baskar, K. Gopal, M. Helliwell, F. Tuna, W.
Wernsdorfer, R. E. P. Winpenny, Dalton Trans. 2010, 39, 4747–4750; m) V.
Chandrasekhar, B. M. Pandian, R. Azhakar, J. J. Vittal, R. Clérac, Inorg.
Chem. 2007, 46, 5140–5142; n) V. Chandrasekhar, B. M. Pandian, R. Boom-
ishankar, A. Steiner, J. J. Vittal, A. Houri, R. Clérac, Inorg. Chem. 2008, 47,
4918–4929; o) V. Chandrasekhar, P. Bag, W. Kroener, K. Gieb, P. Müller,
Inorg. Chem. 2013, 52, 13078–13086; p) A. Chakraborty, P. Bag, J. Goura,
A. K. Bar, J.-P. Sutter, V. Chandrasekhar, Cryst. Growth Des. 2015, 15, 848–
857; q) I. Oyarzabal, J. Ruiz, E. Ruiz, D. Aravena, J. M. Seco, E. Colacio,
Chem. Commun. 2015, 51, 12353–12356; r) K. R. Vignesh, S. K. Langley,
B. Moubaraki, K. S. Murray, G. Rajaraman, Chem. Eur. J. 2015, 21, 16364–
16369.
comp.). IR (KBr): ν = 3388 (br), 2938 (w), 1617 (s), 1590 (s), 1561 (w),
˜
1443 (m), 1385 (m), 1354 (s), 1259 (w), 1224 (w), 1184 (w), 1050 (w),
1012 (w), 867 (w), 848 (m), 755 (w) cm–1. MS (ESI): m/z =
996.08 [C64H62Ho4N12O18 + H2O + MeOH]2+. C65H84Ho4N12O29
([Ho4(LH2)4(μ2-OH)4]·CH3OH·8H2O; 2157.15): calcd. C 36.19, H 3.92,
N 7.79; found C 36.01, H 3.47, N 7.97.
[Er4(LH2)4(μ2-OH)4]·4CH3OH·5H2O (4): Quantities: LH4 (0.041 g,
0.13 mmol), Ho(NO3)3·5H2O (0.057 g, 0.13 mmol), Et3N (0.051 mL,
0.39 mmol), yield 0.042 g, 58.51 % (based on Er3+), m.p. 200 °C
(decomp.). IR (KBr): ν = 3388 (br), 2921 (w), 1617 (s), 1597 (s), 1546
˜
[8]
(w), 1445 (m), 1384 (m), 1355 (s), 1263 (w), 1224 (w), 1186 (w), 1050
(w), 1016 (w), 869 (w), 850 (m), 757 (w) cm–1. MS (ESI): m/z = 1010.10
[C64H62Er4N12O18 + 2MeOH]2+. C68H90Er4N12O29 ([Er4(LH2)4-
(μ2-OH)4]·4CH3OH·5H2O; 2208.54): calcd. C 36.98, H 4.11, N 7.61;
found C 37.01, H 3.97, N 7.84.
Acknowledgments
The authors are thankful to the Department of Science and
Technology (DST), New Delhi, for financial support, V. C. is
thankful for a J. C. Bose National Fellowship. DST is also thanked
for support through the Single-Crystal CCD X-ray Diffractometer
facility at IIT-Kanpur. S. B. and S. D. thank the Council of Scien-
tific and Industrial Research (CSIR), India for a Senior Research
Fellowship. A. K. B. and J.-P. S. acknowledge the Indo-French
Center for the Promotion of Advanced Research (CEFIPRA/
IFCPAR) for support.
Keywords: Lanthanides · Single-molecule magnets ·
Magnetic properties · Quantum tunneling
[1] a) R. Sessoli, H. L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D.
Gatteschi, G. Christou, D. N. Hendrickson, J. Am. Chem. Soc. 1993, 115,
1804–1816; b) R. Sessoli, D. Gatteschi, D. Caneschi, M. A. Novak, Nature
1993, 141, 365.
[9]
a) J. J. Baldoví, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A.
Gaita-Arino, A. Palii, Inorg. Chem. 2012, 51, 12565–12574; b) D. N. Wood-
ruff, R. E. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110–5148; c)
R. A. Layfield, Organometallics 2014, 33, 1084–1099; d) S. Biswas, H. S.
Jena, A. Adhikary, S. Konar, Inorg. Chem. 2014, 53, 3926–3928; e) S. Gos-
wami, A. Adhikary, H. S. Jena, S. Konar, Dalton Trans. 2013, 42, 9813–
9817; f) J. A. Sheikh, A. Adhikary, S. Konar, New J. Chem. 2014, 38, 3006–
3014; g) A. K. Jami, V. Baskar, E. C. Sanudo, Inorg. Chem. 2013, 52, 2432–
2438; h) V. Chandrasekhar, P. Bag, E. Colacio, Inorg. Chem. 2013, 52, 4562–
4570; i) S. Das, A. Dey, S. Biswas, E. Colacio, V. Chandrasekhar, Inorg.
Chem. 2014, 53, 3417–3426; j) S. Das, S. Hossain, A. Dey, S. Biswas, J. P.
Sutter, V. Chandrasekhar, Inorg. Chem. 2014, 53, 5020–5028; k) Q.-W. Li,
J.-L. Liu, J.-H. Jia, Y.-C. Chen, J. Liu, L.-F. Wang, M.-L. Tong, Chem. Commun.
2015, 51, 10291–10294; l) M. Yadav, A. Mondal, V. Mereacre, S. K. Jana,
A. K. Powell, P. W. Roesky, Inorg. Chem. 2015, 54, 7846–7856; m) W. Cao,
C. Gao, Y.-Q. Zhang, D. Qi, T. Liu, K. Wang, C. Duan, S. Gao, J. Jiang, Chem.
Sci. 2015, 6, 5947–5954; n) S. Biswas, S. Das, J. van Leusen, P. Kogerler,
V. Chandrasekhar, Dalton Trans. 2015, 44, 19282–19293; o) V. E. Camp-
bell, H. Bolvin, E. Riviere, R. Guillot, W. Wernsdorfer, T. Mallah, Inorg.
Chem. 2014, 53, 2598–2605; p) V. E. Campbell, R. Guillot, E. Riviere, P. T.
Brun, W. Wernsdorfer, T. Mallah, Inorg. Chem. 2013, 52, 5194–5200; q) A.
Upadhyay, S. K. Singh, C. Das, R. Mondol, S. K. Langley, K. S. Murray, G.
Rajaraman, M. Shanmugam, Chem. Commun. 2014, 50, 8838–8841; r) C.
Das, S. Vaidya, T. Gupta, J. M. Frost, M. Righi, E. K. Brechin, M. Affronte,
G. Rajaraman, M. Shanmugam, Chem. Eur. J. 2015, 21, 15639–15650.
[2] a) A. Ardavan, S. J. Blundell, J. Mater. Chem. 2009, 19, 1754–1760; b) F.
Troiani, M. Affronte, Chem. Soc. Rev. 2011, 40, 3119–3129; c) P. C. E.
Stamp, A. Gaita-Arino, J. Mater. Chem. 2009, 19, 1718–1730; d) J. Leh-
mann, A. Gaita-Ariño, E. Coronado, D. Loss, Nat. Nanotechnol. 2007, 2,
312–317; e) M. N. Leuenberger, D. Loss, Nature 2001, 410, 789–793.
[3] a) M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A.
Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia, R. Sessoli, Nature 2010, 417–
421; b) M. Gonidec, R. Biagi, V. Corradini, F. Moro, V. De Renzi, U. del Pen-
nino, D. Summa, L. Muccioli, C. Zannoni, D. B. Amabilino, J. Veciana, J.
Am. Chem. Soc. 2011, 133, 6603–6612; c) M. Urdampilleta, S. Klyatskaya,
J.-P. Cleuziou, M. Ruben, W. Wernsdorfer, Nat. Mater. 2011, 10, 502–506;
d) A. Candini, S. Klyatskaya, M. Ruben, W. Wernsdorfer, M. Affronte, Nano
Lett. 2011, 11, 2634–2639.
[4] a) M. Affronte, J. Mater. Chem. 2009, 19, 1731–1737; b) A. R. Rocha, V. M.
García-Suárez, S. W. Bailey, C. J. Lambert, J. Ferrerand, S. Sanvito, Nat.
Mater. 2005, 4, 335–339.
[5] a) L. Bogani, W. Wernsdorfer, Nat. Mater. 2008, 7, 179–186; b) Y. Z. Zheng,
M. Evangelisti, R. E. Winpenny, Angew. Chem. Int. Ed. 2011, 50, 3692–
3695; Angew. Chem. 2011, 123, 3776; c) Y. Z. Zheng, M. Evangelisti, F.
Tuna, R. E. Winpenny, J. Am. Chem. Soc. 2012, 134, 1057–1065; d) Y.-Z.
Zheng, M. Evangelisti, R. E. P. Winpenny, Chem. Sci. 2011, 2, 99–102; e)
W. Sethi, S. Sanz, K. S. Pedersen, M. A. Sorensen, G. S. Nichol, G. Lorusso,
M. Evangelisti, E. K. Brechin, S. Piligkos, Dalton Trans. 2015, 44, 10315–
10320; f) Y. Z. Zheng, G. J. Zhou, Z. Zheng, R. E. Winpenny, Chem. Soc.
Rev. 2014, 43, 1462–1475; g) E. Colacio, J. Ruiz, G. Lorusso, E. K. Brechin,
M. Evangelisti, Chem. Commun. 2013, 49, 3845–3847.
[10]
a) Y.-N. Guo, G.-F. Xu, P. Gamez, L. Zhao, S.-Y. Lin, R. Deng, J. Tang, H.-J.
Zhang, J. Am. Chem. Soc. 2010, 132, 8538–8539; b) Y. N. Guo, G. F. Xu,
Eur. J. Inorg. Chem. 0000, 0–0
9
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim