RSC Advances
Paper
ꢀ
aer higher temperature treatment (400 C). The catalytic effi-
5 C. F. Calver, P. Dash and R. W. J. Scott, ChemCatChem, 2011,
3, 695–697.
6 A. K. Singh and Q. Xu, ChemCatChem, 2013, 5, 652–676.
7 M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran,
Q. Zhang, D. Qin and Y. Xia, Chem. Rev., 2011, 111, 3669–
3712.
8 P. Christopher, H. Xin and S. Linic, Nat. Chem., 2011, 3, 467–
472.
9 R. Nazir, P. Fageria, M. Basu and S. Pande, J. Phys. Chem. C,
2017, 121, 19548–19558.
ciency of corresponding monometallic Au@HNT and Pt@HNT
systems before and aer thermal treatment at 200 C was also
ꢀ
compared (Fig. 8). Both Au@HNT 200 and Pt@HNT 200 pre-
sented decreased catalytic efficiency, which clearly highlighted
the positive effect of bimetallic systems. Since the catalytic
performance of metal nanoparticles directly relates to their
specic crystalline facets, improved crystallization of bimetallic
ꢀ
nanostructure aer 200 C treatment may contribute to their
improved catalyst performance; but the loss of Ag spacers due to
ꢀ
melting during thermal treatment at 400 C offsets this benet, 10 Y. Wu, X. Sun, Y. Yang, J. Li, Y. Zhang and D. Qin, Acc. Chem.
resulting in lower catalytic efficiency.
Res., 2017, 50, 1774–1784.
1
1 T. Shirman, J. Lattimer, M. Luneau, E. Shirman, C. Reece,
M. Aizenberg, R. J. Madix, J. Aizenberg and C. M. Friend,
Chem.–Eur. J., 2017, 23, 1–6.
Conclusions
In this study, bimetallic Au–Ag or Pt–Ag nanocages loaded on 12 X. Shen, W. Liu, X. Gao, Z. Lu, X. Wu and X. Gao, J. Am. Chem.
halloysite nanotubes were generated on the basis of Ag@HNT, Soc., 2015, 137, 15882–15891.
which was fabricated via a modied silver-mirror-reaction 13 N. J. Divins, I. Angurell, C. Escudero, V. Perez-Dieste and
without any pretreatment of halloysite. The morphology of J. Llorca, Science, 2014, 346, 620–623.
Au–Ag or Pt–Ag nanostructures on HNTs was modulated by 14 M. Ahmadi, H. Mistry and B. Roldan Cuenya, J. Phys. Chem.
changing the ratio of HAuCl4 (or H PtCl ) to Ag in galvanic Lett., 2016, 7, 3519–3533.
exchanges. The obtained bimetallic Au–Ag@HNT and Pt– 15 C. M. Yim, C. L. Pang, D. R. Hermoso, C. M. Dover,
2
6
Ag@HNT systems presented an improved and extended cata-
lytic effect compared with Ag@HNT. The thermal stability of
Ag@HNT, Au–Ag@HNT and Pt–Ag@HNT was explored as
C. A. Muryn, F. Maccherozzi, S. S. Dhesi, R. Perez and
G. Thornton, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 7903–
7908.
regards morphology, composition and catalytic performance. 16 W. L. Fu, Y. Q. Dai, J. P. H. Li, Z. B. Liu, Y. Yang, Y. B. Sun,
The Ag@HNT system had improved catalytic performance even
aer thermal treatment at 400 C for 20 min as no obvious
Y. Y. Huang, R. W. Ma, L. Zhang and Y. M. Sun, ACS Appl.
Mater. Interfaces, 2017, 9, 21258–21266.
ꢀ
agglomeration and exfoliation of Ag nanoparticles on HNT were 17 A. Wang, Y. Hsieh, Y. Chen and C. Mou, J. Catal., 2006, 237,
found, which may be attributed to the buffering effect of poly- 197–206.
mer covering on Ag nanoparticles during thermal treatment. 18 S. Riela, M. Massaro, C. G. Colletti, G. Lazzara, S. Milioto and
However, the galvanic exchange process in the fabrication of R. Noto, J. Mater. Chem. A, 2017, 5, 13276–13293.
bimetallic Au–Ag and Pt–Ag on halloysite may damage this 19 T. Zhou, Y. Zhao, W. Han, H. Xie, C. Li and M. Yuan, J. Mater.
polymer cover, resulting in a signicant decrease of loading
Chem. A, 2017, 5, 18230–18241.
density of bimetallic nanostructures aer thermal treatment at 20 R. Y. Joshua Tully and Y. Lvov, Biomacromolecules, 2016, 17,
ꢀ
4
00 C, and lowering catalytic performance. But moderate
615–621.
ꢀ
thermal treatment at 200 C did not decrease catalytic efficiency 21 G. K. Dedzo, G. Ngnie and C. Detellier, ACS Appl. Mater.
of bimetallic Au–Ag@HNT and Pt–Ag@HNT.
Interfaces, 2016, 8, 4862–4869.
2
2
2
2
2 J. Feng, H. Fan, D. Zha, L. Wang and Z. Jin, Langmuir, 2016,
32, 10377–10386.
Conflicts of interest
3 W. O. Yah, A. Takahara and Y. M. Lvov, J. Am. Chem. Soc.,
2012, 134, 1853–1859.
4 W. O. Yah, H. Xu, H. Soejima, W. Ma, Y. Lvov and
A. Takahara, J. Am. Chem. Soc., 2012, 134, 12134–12137.
5 S. Jana and S. Das, RSC Adv., 2014, 4, 34435–34442.
There are no conicts to declare.
Acknowledgements
The authors acknowledge nancial support from the National 26 H. Zhu, M. Du, M. Zou, C. Xu and Y. Fu, Dalton Trans., 2012,
Natural Science Foundation of China (Grant 51673210).
41, 10465–10471.
2
2
7 Y. Zhang, X. He, J. Ouyang and H. Yang, Sci. Rep., 2013, 3,
2948.
References
8 M. Zieba, J. L. Hueso, M. Arruebo, G. Mart ´ı nez and
J. Santamar ´ı a, New J. Chem., 2014, 38, 2037–2042.
1
2
3
4
K. D. Gilroy, A. Ruditskiy, H. C. Peng, D. Qin and Y. Xia,
Chem. Rev., 2016, 116, 10414–10472.
Q. Wang, W. Hou, S. Li, J. Xie, J. Li, Y. Zhou and J. Wang,
Green Chem., 2017, 19, 3820–3830.
29 S. Kumar-Krishnan, A. Hernandez-Rangel, U. Pal,
O. Ceballos-Sanchez, F. J. Flores-Ruiz, E. Prokhorov,
O. Arias de Fuentes, R. Esparza and M. Meyyappan, J.
Mater. Chem. B, 2016, 4, 2553–2560.
30 M. Massaro, G. Lazzara, S. Milioto, R. Noto and S. Riela, J.
Mater. Chem. B, 2017, 5, 2867–2882.
Y. Yang, J. Liu, Z. W. Fu and D. Qin, J. Am. Chem. Soc., 2014,
136, 8153–8156.
X. Sun and D. Qin, J. Mater. Chem. C, 2015, 3, 11833–11841.
10244 | RSC Adv., 2018, 8, 10237–10245
This journal is © The Royal Society of Chemistry 2018