compounds contain an identical pederic acid (3a) as the left
half, various methods for the syntheses of pederic acid
Scheme 2a
6-8,14
derivatives 3 have been reported in these synthetic studies.
However, more efficient syntheses of pederic acid derivatives
are still required for further studies on the total synthesis
3
of this mycalamide family and detailed examination of their
biological activity. We herein describe a substantially
improved, simple, and highly efficient synthesis of (+)-
methyl 7-benzoylpederate (3b), which is the key intermediate
in our total synthesis of 1.10
Our synthetic strategy for 3b is outlined in Scheme 1. The
C4-exo-methylene unit is introduced to the ketone 4 at the
Scheme 1
a
Reagents and conditions: (a) Bu
°C; MeCHO, -78 to 0 °C (91%); (b) NaOMe, MeOH, 0 °C
70%); (c) LDA, t-BuOAc, THF, -78 to -15 °C (94%); (d)
BF ‚Et O, HSCH CH SH, CH Cl , -40 °C to room temperature
90%); (e) LDA, MeOC(Me) OCH CO Me, THF, HMPA, ZnCl
ether, -78 to -40 °C; (f) CSA, CH(OMe) , MeOH, CH Cl , room
temperature (82% from 5); (g) PhCOCl, DMAP, pyridine, room
temperature (98%); (h) (CF CO IPh, MeCN, H O, -5 °C to room
temperature (80%); (i) Zn, CH , TiCl , THF, room temperature
79%).
2 2 2 3
BOTf, CH Cl , Et N, -78 to
0
(
final stage. The key step involves the construction of the
C6-C7 bond with concomitant control of the C6 and C7
stereochemistry via a diastereoselective Claisen condensation
of the δ-lactone 5 and a glycolate unit. The δ-lactone 5 can
be prepared from the optically active 2,3-syn-hydroxy ester
3
2
2
2
2
2
(
2
2
2
2
-
3
2
2
3
2
)
I
2
2
2
2
4
(
6.
The synthesis of (+)-methyl 7-benzoylpederate (3b) started
with an Evans asymmetric aldol reaction using chiral
1
6
propionimide 7 derived from L-valine (Scheme 2). Reaction
of the boron enolate of 7 with acetaldehyde provided the
2
(8) (a) Willson, T. M.; Kocienski, P.; Jarowicki, K.; Isaac, K.; Faller,
,3-syn-alcohol 8 with excellent stereoselectivity in 91%
yield. Treatment of 8 with NaOMe in MeOH effected the
A.; Campbell, S. F.; Bordner, J. Tetrahedron 1990, 46, 1757. (b) Willson,
T. M.; Kocienski, P.; Jarowicki, K.; Isaac, K.; Hitchcock, P. M.; Faller,
A.; Campbell, S. F. Tetrahedron 1990, 46, 1767. (c) Kocienski, P.;
Jarowicki, K.; Marczak, S. Synthesis 1991, 1191.
17
alcoholysis to give methyl ester 6 without any racemization
in 70% yield. Reaction of the ester 6 with the lithium enolate
of tert-butyl acetate at -15 °C afforded a 10:1 equilibrium
mixture of â-keto ester 9 and its enol tautomer in 94% yield.
The mixture was converted into the desired δ-lactone 5 in
one step: upon treatment with 1,2-ethanedithiol in the
(
(
9) Hong, C. Y.; Kishi, Y. J. Org. Chem. 1990, 55, 4242.
10) (a) Nakata, T.; Matsukura, H.; Jian, D. L.; Nagashima, H.
Tetrahedron Lett. 1994, 35, 8229. (b) Nakata, T.; Fukui, H.; Nakagawa,
T.; Matsukura, H. Heterocycles 1996, 42, 159. Synthesis of artificial
analogues of mycalamide A: (c) Fukui, H.; Tsuchiya, Y.; Fujita, K.;
Nakagawa, T.; Koshino, H.; Nakata, T. Bioorg. Med. Chem. Lett. 1997, 7,
2
081.
11) (a) Kocienski, P. J.; Narquizian, R.; Raubo, P.; Smith, C.; Boyle,
presence of BF
3
2 2 2
‚Et O in CH Cl , thioacetalization and
(
1
8
F. T. Synlett 1998, 869. Synthesis of 18-O-methyl mycalamide B: (b)
Kocienski, P.; Raubo, P.; Davis, J. K.; Boyle, F. T.; Davies, D. E.; Richter,
A. J. Chem. Soc., Perkin Trans. 1 1996, 1797.
lactonization took place simultaneously, giving a 17:1
mixture of 5 and its C3 epimer in 90% yield. The δ-lactone
5 has an ideal structure toward the target compound 3b: it
retains the 2,3-syn-dimethyl substituents, it possesses a
masked ketone for introduction of the exo-methylene unit,
and it has a lactone carbonyl group for introduction of the
glycolate unit in the development of the side chain.
(
12) Hong, C. Y.; Kishi, Y. J. Am. Chem. Soc. 1991, 113, 9693.
(13) Kocienski, P. J.; Narquizian, R.; Raubo, P.; Smith, C.; Boyle, F. T.
Synlett 1998, 1432.
14) Synthesis of pederic acid derivatives: (a) Adams, M. A.; Duggan,
(
A. J.; Smolanoff, J.; Meinwald, J. J. Am. Chem. Soc. 1979, 101, 5364. (b)
Isaac, K.; Kocienski, P.; Campbell, S. J. Chem. Soc., Chem. Commun. 1983,
2
49. (c) Roush, W. R.; Marron, T. G.; Pfeifer, L. A. J. Org. Chem. 1997,
6
2, 474. (d) Toyota, M.; Hirota, M.; Nishikawa, Y.; Fukumoto, K.; Ihara,
M. J. Org. Chem. 1998, 63, 5895.
15) Synthetic studies of mycalamides: (a) Roush, W. R.; Marron, T.
(16) (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981,
103, 2127. (b) Evans, D. A.; Ennis, M. D.; Le, T.; Mandel, N.; Mandel, G.
J. Am. Chem. Soc. 1984, 106, 1154.
(17) Tai, A.; Imaida, M. Bull. Chem. Soc. Jpn. 1978, 51, 1114.
(18) (a) Nakata, T.; Takao, S.; Fukui, M.; Tanaka, T.; Oishi, T.
Tetrahedron Lett. 1983, 24, 3873. (b) Nakata, T.; Nagao, S.; Yakao, S.;
Tanaka, T.; Oishi, T. Tetrahedron Lett. 1985, 26, 73.
(
G. Tetrahedron Lett. 1993, 34, 5421. (b) Marron, T. G.; Roush, W. R.
Tetrahedron Lett. 1995, 36, 1581. (c) Roush, W. R.; Pfeifer, L. A.; Marron,
T. G. J. Org. Chem. 1998, 63, 2064. (d) Hoffmann, R. W.; Schlapbach, A.
Tetrahedron Lett. 1993, 34, 7903. (e) Hoffmann, R. W.; Breitfelder, S.;
Schlapbach, A. HelV. Chim. Acta 1996, 79, 346.
958
Org. Lett., Vol. 1, No. 6, 1999