isotope-coded affinity tags (ICAT) reagents, biotin and a mass-
differentiated group to quantify the proteins from the protein
mixtures. The process consists of labeling the proteins with the
reagents, proteolytic digestion, isolation of the tagged peptides
(by use of an avidin column), liquid chromatogreaphic separation,
and finally identification and quantification by MS/ MS.16-19 As an
alternative approach, tandem mass tags have been developed.20
The tandem mass tags are composed of a sensitization group of
guanidino functionality and a mass normalization group to de-
rivatize proteins. The relative abundance of proteins is measured
using MS/ MS-based detection. However, the molecular masses
of ICAT reagents and tandem mass tags are relatively high, which
might cause the less soluble derivatized proteins to be absorbed
onto the tubes and columns. It was also true for the cleavable
reagents now in use, (S)-pentafluorophenyl[tris(2,4,6-trimethox-
yphenyl)phosphonium] acetate bromide, bearing high molecular
mass.21-23 Therefore, we developed water-soluble, small-mass
derivatization reagents for proteomics studies.
In a previous paper,24 we reported a method for proteomics
studies. The protein mixtures were first derivatized with a water-
soluble fluorogenic reagent, ammonium 7-fluoro-2,1,3-benzoxa-
diazole-4-sulfonate (SBD-F),25 followed by isolation, digestion of
the modified proteins, and identification of the proteins. The
identification of these proteins was performed by utilizing high-
performance liquid chromatography (HPLC)-fluorescence detec-
tion and electrospray ionization (ESI)-MS/ MS with the probability-
based protein identification algorithm. The derivatized proteins
were highly fluorescent, with long excitation (380 nm) and
emission wavelengths (520 nm), and suitable for femtomole
detection owing to the 2,1,3-benzoxadiazole (benzofurazan) skel-
eton.26,27 In addition, the derivatives with SBD-F were hydrophilic
and suitable for their isolation by HPLC. Using the proposed
method, 11 altered proteins were identified in the islets of
Langerhans in rats pretreated with dexamethazone. By using this
method, however, the SBD-peptides after digestion with enzymes
could not be detected by MS to our satisfaction, due probably to
the negatively charged sulfonyl group in the SBD moiety.
For matrix-assisted laser desorption/ ionization (MALDI)-
MS21-23,28-32 or ESI-MS,32-37 the proteins with positive charges
were proved to be highly detectable because of their easy
Figure 1. Chemical structures of DAABD-Cl and TAABD-Cl and
the derivatization reaction for thiols.
ionization and simple fragmentation.38 Thus, the peptides were
modified to have a positively charged group attached to the
N-terminus to simplify MS/ MS spectra.29-31
In this paper, to improve the detectability of the modified
proteins in MS, we develop the two water-soluble and positively
charged fluorogenic derivatization reagents for thiols instead of
SBD-F, i.e., 4-(dimethylaminoethylaminosulfonyl)-7-chloro-2,1,3-
benzoxadiazole (DAABD-Cl) and 7-chloro-2,1,3-benzoxadiazole-4-
sulfonylaminoethyltrimethylammonium chloride (TAABD-Cl). The
chemical structures of DAABD-Cl and TAABD-Cl and their
derivatives are shown in Figure 1. The DAABD and TAABD
derivatives are positively charged in solution and proved to be
sensitively detected fluorometrically and mass spectrometrically.
The applicability of DAABD-Cl is also described for identification
of an authentic bovine serum albumin (BSA) and proteins in a
soluble extract of Caenorhabditis elegans.
EXPERIMENTAL SECTION
Material and Reagents. 4-Chlorosulfonyl-7-chloro-2,1,3-ben-
zoxadiazole and N,N-dimethylethylenediamine were obtained from
Tokyo Kasei Kogyo Co. (Tokyo, Japan). Aminoethyltrimethylam-
(15) Wolters, D. A.; Washburn, M. P.; Yates, J. R., 3rd. Anal. Chem. 2 0 0 1 , 73,
5683-5690.
(16) Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R.
Nat. Biotechnol. 1 9 9 9 , 17, 994-999.
(17) Han, D. K.; Eng, J.; Zhou, H.; Aebersold, R. Nat. Biotechnol. 2 0 0 1 , 19, 946-
951.
(28) Broberg, S.; Broberg, A.; Duus, J. O. Rapid Commun. Mass Spectrom. 2 0 0 0 ,
14, 1801-1805.
(29) Peters, E. C.; Horn, D. M.; Tully, D. C.; Brock, A. Rapid Commun. Mass
(18) Zhang, R.; Sioma, C. S.; Wang, S.; Regnier, F. E. Anal. Chem. 2 0 0 1 , 73,
Spectrom. 2 0 0 1 , 15, 2387-2392.
5142-5149.
(30) Spengler, B.; Luetzenkirchen, F.; Metzger, S.; Chaurand, P.; Kaufmann, R.;
Jeffery, W.; Bartlet-Jones, M.; Pappin, D. J. C. Int. J. Mass Spectrom. 1 9 9 7 ,
169, 127-140.
(19) Griffin, T. J.; Han, D. K.; Gygi, S. P.; Rist, B.; Lee, H.; Aebersold, R.; Parker,
K. C. J. Am. Soc. Mass Spectrom. 2 0 0 1 , 12, 1238-1246.
(20) Schlosser, A.; Lehmann, W. D. J. Mass Spectrom. 2 0 0 0 , 35, 1382-1390.
(21) Shen, T. L.; Huang, Z. H.; Laivenieks, M.; Zeikus, J. G.; Gage, D. A.; Allison,
J. J. Mass Spectrom. 1 9 9 9 , 34, 1154-1165.
(31) Huang, Z. H.; Shen, T. L.; Wu, J. A.; Gage, D. A.; Watson, J. T. Anal. Biochem.
1 9 9 9 , 268, 305-317.
(32) Stults, J. T.; Lai, J.; McCune, S.; Wetzel, R. Anal. Chem. 1 9 9 3 , 65, 1703-
1708.
(22) Huang, Z. H.; Wu, J.; Roth, K. D. W.; Yang, Y.; Gage, D. A.; Watson, J. T.
Anal. Chem. 1 9 9 7 , 69, 137-144.
(23) Adamczyk, M.; Gebler, J.; Wu, J. Rapid Commun. Mass Spectrom. 1 9 9 9 ,
13, 1413-1422.
(33) Cech, N. B.; Enke, C. Mass Spectrom. Rev. 2 0 0 1 , 20, 362-387.
(34) Yoshino, K.; Takao, T.; Murata, H.; Shimonishi, Y. Anal. Chem. 1 9 9 5 , 67,
4028-4031.
(24) Toriumi, C.; Imai, K. Anal. Chem. 2 0 0 3 , 75, 3725-3730.
(25) Imai, K.; Toyo’oka, T.; Watanabe, Y. Anal. Biochem. 1 9 8 3 , 128, 471-473.
(26) Imai, K.; Uzu, S.; Toyo’oka, T. J. Pharm. Biomed. Anal. 1 9 8 9 , 7, 1395-
1403.
(27) Uchiyama, S.; Santa, T.; Okiyama, N.; Toriba, A.; Imai, K. Biomed.
Chromatogr. 2 0 0 1 , 15, 295-318.
(35) Okamoto, M.; Takahashi, K. I.; Doi, T. Rapid Commun. Mass Spectrom.
1 9 9 5 , 9, 641-643.
(36) Suzuki, S.; Kakehi, K.; Honda, S. Anal. Chem. 1 9 9 6 , 68, 2073-2083.
(37) Quirke, J. M.; Van Berkel, G. J. J. Mass Spectrom. 2 0 0 1 , 36, 1294-1300.
(38) Roth, K. D.; Huang, Z. H.; Sadagopan, N.; Watson, J. T. Mass Spectrom.
Rev. 1 9 9 8 , 17, 255-274.
Analytical Chemistry, Vol. 76, No. 3, February 1, 2004 729