Organic & Biomolecular Chemistry
Communication
+
hvb signal when we added p-benzoquinone to eliminate 10 D. Ma, A. Liu, S. Li, C. Lu and C. Chen, Catal. Sci. Technol.,
photo-induced ecb−. More certainly, when there were no sca-
2018, 8, 2030–2045.
+
vengers available to eliminate either photo-induced hvb or 11 Y. Wang, A. Liu, D. Ma, S. Li, C. Lu, T. Li and C. Chen,
ecb−, we indeed did not observe any obvious EPR signals attrib-
Catalysts, 2018, 8, 355.
+
uted to hvb or ecb−. Thus, our EPR results indicated that an 12 D. Ma, S. Zhai, Y. Wang, A. Liu and C. Chen, Molecules,
interaction exists between azomethine ylide and TiO2 photo-
2019, 24, 330.
−
induced hvb+/ecb species. A portion of TiO2 photo-induced 13 D. Ma, S. Zhai, Y. Wang, A. Liu and C. Chen, Front. Chem.,
−
hvb+/ecb species acts as the redox agent and the other part
2019, 7, 636.
acts as the Lewis acid/base catalyst to dictate the high yields of 14 A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev., 1995,
1,3-dipolar cycloaddition reactions. To the best of our knowl- 95, 735–758.
edge, this is the first time that such a unique activity in TiO2 15 S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro and
photocatalysis is revealed. L. Palmisano, J. Am. Chem. Soc., 2008, 130, 1568–1569.
In summary, we have demonstrated that as a cheap, stable, 16 S. Füldner, R. Mild, H. I. Siegmund, J. A. Schroeder,
Earth-abundant and non-toxic heterogeneous photocatalyst, M. Gruber and B. König, Green Chem., 2010, 12, 400–406.
P25 TiO2, could realize challenging non-activated 1,3-dipolar 17 M. Cherevatskaya, M. Neumann, S. Fueldner, C. Harlander,
cycloaddition for the preparation of polysubstituted imidazoli-
dines without numerous traditional auxiliaries and ligands.
S. Kuemmel, S. Dankesreiter, A. Pfitzner, K. Zeitler and
B. Koenig, Angew. Chem., Int. Ed., 2012, 51, 4062–4066.
This method demonstrated a fairly broad substrate scope and 18 X. J. Lang, W. H. Ma, Y. B. Zhao, C. C. Chen, H. W. Ji and
functional group tolerance. More importantly, it is revealed for J. C. Zhao, Chem. – Eur. J., 2012, 18, 2624–2631.
the first time that radically different from its well-known 19 M. Rueping, J. Zoller, D. C. Fabry, K. Poscharny,
common redox transformation, the TiO2 photocatalyst can
also act as a powerful Lewis- and Brønsted-acid/base catalyst to
R. M. Koenigs, T. E. Weirich and J. Mayer, Chem. – Eur. J.,
2012, 18, 3478–3481.
realize important 1,3-dipolar cycloadditions without additional 20 D. G. Ma, Y. Yan, H. W. Ji, C. C. Chen and J. C. Zhao, Chem.
EWGs in substrates.
Commun., 2015, 51, 17451–17454.
21 Y. Liu, M. Zhang, C.-H. Tung and Y. Wang, ACS Catal.,
2016, 6, 8389–8394.
22 D. C. Fabry, Y. A. Ho, R. Zapf, W. Tremel, M. Panthofer,
M. Rueping and T. H. Rehm, Green Chem., 2017, 19, 1911–
1918.
Conflicts of interest
There are no conflicts to declare.
23 D. Ma, A. Liu, C. Lu and C. Chen, ACS Omega, 2017, 2,
4161–4172.
24 X. Qiao, S. Biswas, W. Wu, F. Zhu, C.-H. Tung and Y. Wang,
Tetrahedron, 2018, 74, 2421–2427.
25 J. Li, A. Liu, Y. Wang, S. Zhai, D. Ma and C. Chen, Catal.
Sci. Technol., 2020, 10, 4917–4922.
26 W. Chang, C. Sun, X. Pang, H. Sheng, Y. Li, H. Ji, W. Song,
C. Chen, W. Ma and J. Zhao, Angew. Chem., Int. Ed., 2015,
54, 2052–2056.
Notes and references
1 H. Xie, J. Zhu, Z. Chen, S. Li and Y. Wu, J. Org. Chem.,
2010, 75, 7468–7471.
2 Y. Saima, S. Khamarui, K. S. Gayen, P. Pandit and
D. K. Maiti, Chem. Commun., 2012, 48, 6601–6603.
3 C. Izquierdo, F. Esteban, J. L. G. Ruano, A. Fraile and
J. Alemán, Org. Lett., 2016, 18, 92–95.
4 R. Xu, R. Xia, M. Luo, X. Xu, J. Cheng, X. Shao and Z. Li, 27 V. Sharma and M. S. Y. Khan, Eur. J. Med. Chem., 2001, 36,
J. Agric. Food Chem., 2014, 62, 381–390. 651–658.
5 F. Parrino, M. Bellardita, E. I. García-López, G. Marcì, 28 Q.-H. Li, L. Wei, X. Chen and C.-J. Wang, Chem. Commun.,
V. Loddo and L. Palmisano, ACS Catal., 2018, 8, 11191–
11225.
6 C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem.
Rev., 2013, 113, 5322–5363.
7 G. Palmisano, E. Garcia-Lopez, G. Marci, V. Loddo,
S. Yurdakal, V. Augugliaro and L. Palmisano, Chem.
Commun., 2010, 46, 7074–7089.
2013, 49, 6277–6279.
29 W.-J. Liu, X.-H. Chen and L.-Z. Gong, Org. Lett., 2008, 10,
5357–5360.
30 N. Siemer, A. Lüken, M. Zalibera, J. Frenzel, D. Muñoz-
Santiburcio, A. Savitsky, W. Lubitz, M. Muhler, D. Marx and
J. Strunk, J. Am. Chem. Soc., 2018, 140, 18082–18092.
31 J. M. Coronado, A. J. Maira, J. C. Conesa, K. L. Yeung,
V. Augugliaro and J. Soria, Langmuir, 2001, 17, 5368–5374.
8 L. Palmisano, V. Augugliaro, M. Bellardita, A. Di Paola,
E. G. Lopez, V. Loddo, G. Marci, G. Palmisano and 32 Y. Yan, W. Shi, Z. Yuan, S. He, D. Li, Q. Meng, H. Ji,
S. Yurdakal, ChemSusChem, 2011, 4, 1431–1438.
9 H. Kisch, Angew. Chem., Int. Ed., 2013, 52, 812–847.
C. Chen, W. Ma and J. Zhae, J. Am. Chem. Soc., 2017, 139,
2083–2089.
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 2192–2197 | 2197