Please d Co hn eomt Ca do j mu s mt margins
Page 4 of 5
COMMUNICATION
Journal Name
conversions were obtained for the BML and NCL steps, respectively, 4. P. E. Dawson, T. W. Muir, I. Clarklewis and S. B. H. Kent,
DOI: 10.1039/C5CC07227A
to give 15 and 16 (Fig. S3 and 4†). After HPLC purification, the C-
Science, 1994, 266, 776-779.
terminus-labeled ubiquitin 16 was further labeled on the N- 5. C.-F. Liu, C. Rao and J. P. Tam, Tetrahedron Lett., 1996, 37
terminus using SrtA and a depsipeptide containing a motif LPET-glc- 933-936.
G. The use of the ester derivative of the SrtA motif LPXTG was 6. X. Li, H. Y. Lam, Y. Zhang and C. K. Chan, Org. Lett., 2010, 12
based on a previous report that it could significantly improve the 1724-1727.
SML yield due to irreversibility of the reaction. We placed a short 7. (a) T. Wieland, E. Bokelmann, L. Bauer, H. U. Lang and H. Lau,
,
,
17
sequence –GSGSGS- between the N-terminal Gly residue and the
main body of ubiquitin for better accessibility of its N-terminus by
SML. A depsipeptide Nle-YLPET-glc-G 17a was first used for
demonstration. The SML reaction gave a near quantitative yield of
Liebigs Ann. Chem., 1953, 583, 129-149; (b) J. P. Tam, Y. A.
Lu, C.-F. Liu and J. Shao, Proc. Natl. Acad. Sci. USA, 1995, 92
12485-12489; (c) T. M. Hackeng, J. H. Griffin and P. E.
,
Dawson, Proc. Natl. Acad. Sci. USA, 1999, 96, 10068-10073.
1
0
8a after 2.5 h with two molar equivalents of the depsipeptide and 8. S. Aimoto, Biopolymers, 1999, 51, 247-265.
.1 molar equivalent of SrtA (Fig. 4B). SML requires a high molar 9. (a) F. Mende and O. Seitz, Angew. Chem., Int. Ed., 2011, 50
,
,
ratio of SrtA, which is a significant drawback as compared to BML
which requires a very small amount of the enzyme. Nevertheless, a
1232-1240; (b) J. Kang and D. Macmillan, Org. Biomol. Chem.
2010, , 1993-2002.
8
simple treatment with Ni-NTA removed the His-tagged SrtA and 10. (a) K. V. Mills, M. A. Johnson and F. B. Perler, J. Biol. Chem.
,
subsequent dialysis removed the small peptide from the desired
product. Using SML, 16 was also successfully ligated with a
fluorescein-peptide fluor-YLPET-glc-G 17b to give 18b which is
dually labelled with a fluorescence probe and biotin group on the N-
and C-ter ends, respectively (Fig. 4C).
2014, 289, 14498-14505; (b) N. H. Shah and T. W. Muir,
Chem. Sci., 2014, , 446-461; (c) M. Q. Xu and T. C. Evans, Jr.,
Methods, 2001, 24, 257-277; (d) T. W. Muir, D. Sondhi and P.
A. Cole, Proc. Natl. Acad. Sci. USA, 1998, 95, 6705-6710; (e)
5
T. C. Evans, Jr., J. Benner and M. Q. Xu, Protein Sci., 1998, 7,
Currently, intein-based technology is the method of choice to
2256-2264.
access protein thioesters for ligation reactions. We have shown that 11. T. K. Chang, D. Y. Jackson, J. P. Burnier and J. A. Wells, Proc.
BML provides a complementary method to prepare protein
Natl. Acad. Sci. USA, 1994, 91, 12544-12548.
thioesters conveniently and efficiently as seen with several protein 12. (a) Luciano A. Marr fia nf i,
Andrea C. DeDent and Olaf
Microbiol. Mol. Biol. Rev. 2006, 70, 192-221;
substrates of different sizes. This method requires the substrate
protein to have only a small tripeptide motif NHV at the C-terminus
and renders little change on the protein sequence after ligation as it
leaves behind only a dipeptide trace -NG. We have further shown
Schneewind.,
(b) H. Ton-That, G. Liu, S. K. Mazmanian, K. F. Faull and O.
Schneewind, Proc. Natl. Acad. Sci. USA, 1999, 96, 12424-
12429.
that this method can be combined successfully in tandem with NCL 13. (a) J. J. Ling, R. L. Policarpo, A. E. Rabideau, X. Liao and B. L.
and SML for sequential ligation to achieve bi-directional and
orthogonal labelling of ubiquitin in a model system. These results
demonstrate butelase 1 as a versatile tool for protein manipulation.
We foresee that, like other immerging methods, BML will offer
numerous future opportunities in biotechnology.
Pentelute, J. Am. Chem. Soc., 2012, 134, 10749-10752; (b) Y.
M. Li, Y. T. Li, M. Pan, X. Q. Kong, Y. C. Huang, Z. Y. Hong and
L. Liu, Angew. Chem., Int. Ed., 2014, 53, 2198-2202; (c) X. H.
Tan, A. Wirjo and C.-F. Liu, ChemBioChem, 2007, 8, 1512-
1515.
1
8
We thank Dr. T. Cornvik at Nanyang Technological University for 14. G. K. Nguyen, S. Wang, Y. Qiu, X. Hemu, Y. Lian and J. P. Tam,
providing the plasmids of some of the model proteins. This work Nat. Chem. Biol., 2014, 10, 732-738.
was supported by Singapore National Research Foundation- 15. H. K. Binz, M. T. Stumpp, P. Forrer, P. Amstutz and A.
Competitive Research Programme Grant (NRF-CRP8-2011-05).
Pluckthun, J. Mol. Biol., 2003, 332, 489-503.
1
6. (a) J. M. Antos, G. L. Chew, C. P. Guimaraes, N. C. Yoder, G.
M. Grotenbreg, M. W. Popp and H. L. Ploegh, J. Am. Chem.
Soc., 2009, 131, 10800-10801; (b) P. R. Race, M. L. Bentley, J.
A. Melvin, A. Crow, R. K. Hughes, W. D. Smith, R. B. Sessions,
M. A. Kehoe, D. G. McCafferty and M. J. Banfield, J. Biol.
Chem., 2009, 284, 6924-6933.
Notes and references
1
. (a) P. E. Dawson and S. B. Kent, Annu. Rev. Biochem., 2000,
6
9
, 923-960; (b) C. P. R. Hackenberger and D. Schwarzer, 17. D. J. Williamson, M. A. Fascione, M. E. Webb and W. B.
Angew. Chem., Int. Ed., 2008, 47, 10030-10074; (c) R. J.
Turnbull, Angew. Chem., Int. Ed., 2012, 51, 9377-9380.
Payne and C. H. Wong, Chem. Commun., 2010, 46, 21-43; (d) 18. G. Veggiani, B. Zakeri and M. Howarth, Trends Biotechnol.
J. P. Tam, Q. Yu and Z. Miao, Biopolymers, 1999, 51, 311-332;
2014, 32, 506-512.
e) V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480
71-479.
(
,
4
2
3
. (a) C. P. Hackenberger and D. Schwarzer, Angew. Chem., Int.
Ed., 2008, 47, 10030-10074; (b) J. P. Pellois and T. W. Muir,
Curr. Opin. Chem. Biol., 2006, 10, 487-491; (c) D. Macmillan,
Angew. Chem. Int. Ed., 2006, 45, 7668-7672.
. C.-F. Liu and J. P. Tam, J. Am. Chem. Soc., 1994, 116, 4149-
4
153.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins