2
00
J. Casas et al. / Tetrahedron: Asymmetry 14 (2003) 197–200
Lewis base and the Al–Cl moiety acting as Lewis acid,
is supported by the following facts: (1) only carbonyl
compounds capable of coordinating to the Lewis acid
centre, i.e. aldehydes but not ketones, do in fact react;
2. (a) Shibasaki, M.; Kanai, M.; Funabashi, K. Chem.
Commun. 2002, 1989–1999; (b) Matsunaga, S.; Ohshima,
T.; Shibasaki, M. Adv. Synth. Catal. 2002, 344, 3–9; (c)
Shibasaki, M.; Kanai, M. Chem. Pharm. Bull. 2001, 49,
511–524; (d) Rowlands, G. J. Tetrahedron 2001, 57, 1865–
1882; (e) Gr o¨ ger, H. Chem. Eur. J. 2001, 7, 5246–5251.
3. (a) Hamashima, Y.; Sawada, D.; Kanai, M.; Shibasaki, M.
J. Am. Chem. Soc. 1999, 121, 2641–2642; (b) Hamashima,
Y.; Sawada, D.; Nogami, H.; Kanai, M.; Shibasaki, M.
Tetrahedron 2001, 57, 805–814.
(
2) the addition of a competing external base such as
triethylamine (20 mol%) lowered the er down to 65:35,
while simultaneously increased the reaction rate (3 h,
>
99% yield). Accordingly we propose a catalytic cycle
where the central aluminium atom might reach
1
5,16
pentacoordination
by amino and carbonyl group
ligation to give species II–III, where, the aldehyde is
fixed by a two point interaction: a strong one involving
aluminium and one of the electron pairs on the oxygen
carbonyl and a weaker one involving the aldehydic
4
. Takamura, M.; Hamashima, Y.; Usuda, H.; Kanai, M.;
Shibasaki, M. Angew. Chem., Int. Ed. 2000, 39, 1650–1652.
. (a) Takamura, M.; Funabashi, K.; Kanai, M.; Shibasaki,
M. J. Am. Chem. Soc. 2000, 122, 6327–6328; (b) Takamura,
M.; Funabashi, K.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2001, 123, 6801–6808.
5
1
7
proton and the chlorine atom. The activation of
8,10
methyl cyanoformate by the tertiary amine,
followed
by transfer of the cyanide to the carbonyl group by the
re face, affords intermediate IV allowing final carbony-
lation of the cyanohydrin to occur. At this point in our
studies we have not assigned a clear-cut role to the
water-containing molecular sieves other than facilitat-
ing the turnover of the catalyst, possibly at the final
step of the cycle.
6
. Casas, J.; N a´ jera, C.; Sansano, J. M.; Sa a´ , J. M. Org. Lett.
2
002, 4, 2589–2592.
. (a) Scholl, M.; Lim, C.-K.; Fu, G. C. J. Org. Chem. 1995,
0, 6229–6231; (b) Shin, D.-S.; Jung, Y. S.; Kim, J.-J.; Ahn,
7
6
C. Bull. Korean Chem. Soc. 1998, 19, 119–120.
. (a) Berthiaume, D.; Poirier, D. Tetrahedron 2000, 56,
8
9
5995–6003; (b) Deardorff, D. R.; Taniguchi, C. M.; Tafti,
S. A.; Kim, H. Y.; Choi, S. Y.; Downey, K. J.; Nguyen,
T. V. J. Org. Chem. 2001, 66, 7191–7194.
This work reports for the first time the enantioselective
cyanation–methoxycarbonylation of aldehydes with a
monometallic, bifunctional catalyst using mild reaction
conditions. The reactions occur in good chemical yields
and high enantioselectivities, the chiral ligand BINO-
LAM 2 being easily recovered. The thus obtained enan-
tioenriched cyanohydrin carbonates can be exploited in
the synthesis of important building blocks for the syn-
thesis of enantiopure 1,2-bifunctional compounds such
. Okimoto, M.; Chiba, T. Synthesis 1996, 1188–1190.
1
1
1
0. Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2001, 123,
6195–6196.
1. Tian, J.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M.
Angew. Chem., Int. Ed. 2002, 41, 3636–3638.
2. The role of molecular sieves as an H O donor has been
2
demonstrated in the case of binaphthol-derived titanium
complexes: Terada, M.; Matsumoto, Y.; Nakamura, Y.;
Mikami, K. Chem. Commun. 1997, 281–282.
10
as b-amino alcohols by reduction with LiAlH4 and
also in palladium(0)-catalysed allylic substitution in the
13. The influence of Ph PO to prevent oligomerisation of the
18
3
case of a,b-unsaturated aldehyde derivatives. An
exploration of the scope of these applications and
mechanistic studies are currently underway.
catalyst and to activate trimethylsilyl cyanide has been
pointed out by: Vogl, E. M.; Gr o¨ ger, H.; Shibasaki, M.
Angew. Chem., Int. Ed. 1999, 38, 1570–1577.
14. Typical experimental procedure: To a suspension of enan-
tiopure (R)-BINOLAM 2 (0.025 mmol, 11.4 mg) and 4 A
,
Acknowledgements
molecular sieves (previously dried at 120°C for 4 h) in dry
toluene (1 mL), under an inert atmosphere (nitrogen), was
added dimethylaluminium chloride (1 M solution in hex-
anes, 0.025 mmol, 25 mL) and the resulting suspension was
stirred at room temperature for 1 h. To this mixture freshly
distilled aldehyde (0.25 mmol) and methyl cyanoformate
This work has been supported by the Direcci o´ n Gen-
eral de Investigaci o´ n of the Spanish Ministerio de Cien-
cia y Tecnolog ´ı a (MCyT) (BQU2001-0724) and the
Generalitat Valenciana (CTIDIB2002/320). A.B. thanks
the Generalitat Valenciana for a predoctoral fellowship.
(
see Table 2) were added in one portion. The reaction was
1
monitored by H NMR spectroscopy and GC and when
it was judged complete 1 M aqueous solution of hydrochlo-
ric acid (2 mL) and ethyl acetate (2 mL) were added and
References
the organic layer was separated, dried (MgSO ) and
4
evaporated, affording the pure crude product 4.
5. Aoi, T.; Kagoshima, K.; Maruoka, K. J. Am. Chem. Soc.
1
. (a) Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schau-
mann, E. Houben-Weyl, Methods of Organic Chemistry,
Stereoselective Synthesis; Thieme: Stuttgart/New York,
1
1997, 119, 5754–5755.
1
6. The X-ray structure of the pentacoordinate BINOL–
AlMe(THF) dimmer complex has been described: Arai, T.;
Sasai, H.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc.
1
996; Vol. E21; (b) Catalytic Asymmetric Synthesis, 2nd
ed.; Ojima, I., Ed.; Wiley-VCH: Weinheim, 2000; (c)
Comprehensive Asymmetric Catalysis I–III; Jacobsen, E.
N.; Pfaltz, A.; Yamamoto, H. Eds.; Springer Verlag:
Berlin, 1999; (d) Corey, E. J.; Helal, C. J. Angew. Chem.,
Int. Ed. 1998, 37, 1987–2012; (e) Asymmetric Catalysis in
Organic Synthesis; Noyori, R., Ed.; Wiley: New York
1998, 120, 441–442.
1
7. Corey, E. J.; Lee, T. W. Chem. Commun. 2001, 1321–1329.
18. Deardorff, D. R.; Taniguchi, C. M.; Tafti, S. A.; Kim, H.
Y.; Choi, S. Y.; Downey, K. J.; Nguyen, T. V. J. Org.
Chem. 2001, 66, 7191–7194.
1
994.