X. Tong et al. / Catalysis Today 175 (2011) 524–527
527
support of the Natural Science Foundation of China under contract
number 20425619. The work has been also supported by the Pro-
gram of Introducing Talents to the University Disciplines under
file number B06006, and the Program for Changjiang Scholars and
Innovative Research Teams in Universities under file number IRT
0641.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] M. Bicker, J. Hirth, H. Vogel, Green Chem. 5 (2003) 280–284.
[2] T. Werpy, G. Petersen, Top Value Added Chemicals from Biomass 2004, available
[3] J.N. Chheda, G.W. Huber, J.A. Dumesic, Angew. Chem. Int. Ed. 46 (2007)
7164–7183.
[4] G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Science 308 (2005)
1446–1450.
[5] A. Corma, S. Iborra, A. Velty, Chem. Rev. 107 (2007) 2411–2502.
[6] X. Tong, Y. Ma, Y. Li, Appl. Catal. A: Gen. 385 (2010) 1–13.
[7] Moreau, M.N. Belgacem, A. Gandini, Top. Catal. 27 (2004) 11–30.
[8] M. Bicker, S. Endres, L. Ott, H. Vogel, J. Mol. Catal. A: Chem. 239 (2005) 151–157.
[9] C. Sievers, I. Musin, T. Marzialetti, M.B.V. Olarte, P.K. Agrawal, C.W. Jones, Chem-
SusChem 2 (2009) 665–671.
[10] Y. Roman-Leshkov, J.N. Chheda, J.A. Dumesic, Science 312 (2006) 1933–1937.
[11] A.A.M. Lapis, L.F. de Oliveira, B.A.D. Neto, J. Dupont, ChemSusChem 1 (2008)
759–762.
[12] A. Takagaki, M. Ohara, S. Nishimura, K. Ebitani, Chem. Commun. (2009)
6276–6278.
[13] B.F.M. Kuster, H.S. van der Baan, Carbohydr. Res. 54 (1977) 165–176.
[14] K. Hamada, H. Yoshihara, G. Suzukamo, Chem. Lett. (1982) 617–618.
[15] L. Rigal, A. Gaset, Biomass 8 (1985) 267–276.
[16] X. Qi, M. Watanabe, T.M. Aida, R.L. Smith Jr., Green Chem. 10 (2008) 799–805.
[17] X. Qi, M. Watanabe, T.M. Aida, R.L. Smith Jr., Ind. Eng. Chem. Res. 47 (2008)
9234–9239.
[18] C. Moreau, R. Durand, C. Pourcheron, S. Razigade, Ind. Crops Prod. 3 (1994)
85–90.
Fig. 3. Electronic absorption spectra of FeCl3, FeCl3–Et4NCl and FeCl3–Et4NBr in
NMP (concentration: (a) 0.5 mM. (b) 0.5 M).
[19] P. Rivalier, J. Duhamet, C. Moreau, R. Durand, Catal. Today 24 (1995) 165–171.
[20] M.A. Schwegler, P. Vinke, M. van der Eijk, H. van Bekkum, Appl. Catal. A: Gen.
80 (1992) 41–57.
[21] Q. Bao, K. Qiao, D. Tomida, C. Yokoyama, Catal. Commun. 9 (2008) 1383–1388.
[22] S. Hu, Z. Zhang, Y. Zhou, B. Han, H. Fan, W. Li, J. Song, Y. Xie, Green Chem. 10
(2008) 1280–1283.
[23] X. Tong, Y. Li, ChemSusChem 3 (2010) 350–355.
[24] X. Tong, Y. Ma, Y. Li, Carbohydr. Res. 345 (2010) 1698–1701.
[25] B.F.M. Kuster, Starch/Staerke 42 (1990) 314–321.
of FeCl3 or FeCl3–Et4NCl, which is also indicative of the presence of
addition of Et4NBr or Et4NCl, the major iron species in solution
are FeCl3Br− and FeCl4−, respectively, which probably corresponds
to the active catalyst. Moreover, based on the experimental data
in Table 1, it is also found that the addition of NH4Br, Et4NBr,
LiBr, NaBr or KBr (Table 1, entries 3, 4, 10, 11, 12) can obviously
promote the dehydration of fructose. These results are consistent
with the existence of active FeCl3Br− species in the dehydration
reaction.
[26] J. Lewkowski, Arkivoc 2 (2001) 17–54.
[27] H.B. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Science 316 (2007) 1597–1600.
[28] G. Yong, Y. Zhang, J.Y. Ying, Angew. Chem. Int. Ed. 47 (2008) 9345–9348.
[29] C. Bolm, J. Legros, J. Le Paih, L. Zani, Chem. Rev. 104 (2004) 6217–6254.
[30] A. Fürstner, R. Martin, Chem. Lett. 34 (2005) 624–629.
[31] I. Iovel, K. Mertins, J. Kischel, A. Zapf, M. Beller, Angew. Chem. Int. Ed. 44 (2005)
3913–3916.
4. Conclusions
[32] C.C. Kofink, B. Blank, S. Pagano, N. Götz, P. Knochel, Chem. Commun. (2007)
1954–1956.
In summary, a new FeCl3–Et4NBr system has been developed
which can catalyze efficiently the selective dehydration of fructose
to HMF; moreover, the conversion of sucrose to HMF with moderate
selectivity is also obtained with this catalytic system under mild
conditions. It will therefore generate a promising strategy in the
utilization of renewable biomass.
[33] C.M. Rao Volla, P. Vogel, Angew. Chem. Int. Ed. 47 (2008) 1305–1307.
[34] N. Wang, R. Liu, J. Chen, X. Liang, Chem. Commun. (2005) 5322–5324.
[35] Y. Peng, D. Fu, R. Liu, F. Zhang, X. Liang, Chemosphere 71 (2008) 990–997.
[36] S. Gaillard, J.-L. Renaud, ChemSusChem 1 (2008) 505–509.
[37] C. Huo, Y. Li, J. Wang, H. Jiao, J. Am. Chem. Soc. 131 (2009) 14713–14721.
[38] K. Seri, Y. Inoue, H. Ishida, Bull. Chem. Soc. Jpn. 74 (2001) 1145–1150.
[39] S. Hu, Z. Zhang, J. Song, Y. Zhou, B. Han, Green Chem. 11 (2009) 1746–1749.
[40] J. Young, G. Chan, Y. Zhang, ChemSusChem 2 (2009) 731–734.
[41] F.S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 45 (2006) 2163–2173.
[42] Y. Yoshida, A. Otsuka, G. Saito, S. Natsume, E. Nishibori, M. Takata, M. Sakata,
M. Takahashi, T. Yoko, Bull. Chem. Soc. Jpn. 78 (2005) 1921–1928.
[43] B.N. Figgis, M.A. Hitchman, Ligand Field Theory and Its Applications, Wiley,
2000, p138.
Acknowledgements
Tong thanks the financial support from the China Postdoctoral
Science Foundation (20080440676 and 200902273). Li thanks the