10.1002/cctc.201801809
ChemCatChem
COMMUNICATION
Calbry-Muzyka for proofreading. Dr. Pinar and Dr. Sushkevich
acknowledges the Energy System integration (ESI) platform at
the Paul Scherrer Institute for funding.
Keywords: copper zeolites • heterogeneous catalysis • mazzite•
methane • methanol
[1]
[2]
T. A. Brzustowski, Prog. Energy Combust. Sci. 1976, 2, 129–141.
M. R. Johnson, A. R. Coderre, J. Air Waste Manag. Assoc. 2011, 61,
190–200.
[3]
C. D. Elvidge, M. Zhizhin, K. Baugh, F. C. Hsu, T. Ghosh, Energies 2016,
9.
[4]
[5]
N. R. Foster, Appl. Catal. 1985, 19, 1–11.
J. P. Lange, K. P. de Jong, J. Ansorge, P. J. A. Tijm, Stud. Surf. Sci.
Catal. 1997 107, 81-86.
[6]
[7]
R. Horn, R. Schlögl, Catal. Letters 2015, 145, 23–39.
M. Ravi, M. Ranocchiari, J. A. van Bokhoven, Angew. Chemie - Int. Ed.
2017, 56, 16464–16483.
Figure 4: (Right Axis) Ratio of μmol of Cu(I) formed during reaction by
the μmol of methanol formed. (Left Axis) Ratio of calculated μmol active
copper to μmol of methanol when 1 bar and 30 bar methane was used.
[8]
[9]
M. Ahlquist, R. J. Nielsen, R. A. Periana, W. A. Goddard III, J. Am. Chem.
Soc. 2009, 131, 17110 – 17115.
methanol in Cu-MAZ. The first method is quantifying the moles of
Cu(II) converted to Cu(I) as determined by XANES per mole
methanol. The second method is quantifying the moles of active
copper per mole methanol. To quantify the active copper, we
subtract the inactive copper as determined by the x-intercept from
the total copper concentration. For both methods, the values
primarily fall in between 2-3 with one method representing the
electron and the other methods participating coppers. From this
set of Cu-MAZ samples, mol-MeOH/mol-activeCu ratios as high
as 0.48 were found when the extraction was repeated until no
methanol was detected (Figure S8).
M. H. Groothaert, P. J. Smeets, B. F. Sels, P. A. Jacobs, R. A.
Schoonheydt, J. Am. Chem. Soc. 2005, 127, 1394-1395.
[10] P. J. Smeets, M. H. Groothaert, R. A. Schoonheydt, Catal. Today 2005,
110, 303–309.
[11] P. Vanelderen, R. Hadt, P. Smeets, E. Solomon, R. Schoonheydt, B.
Sels, J. Catal. 2011, 284, 157-164.
[12] E. M. C. Alayon, M. Nachtegaal, M. Ranocchiari, J. A. van Bokhoven,
Chem. Commun. 2012, 48, 404–406.
[13] E. M. C. Alayon, M. Nachtegaal, A. Bodi, J. A. Van Bokhoven, ACS Catal.
2014, 4, 16–22.
[14] M. J. Wulfers, S. Teketel, B. Ipek, R. F. Lobo, Chem. Commun. 2015, 51,
4447–4450.
A wide range of active sites have been proposed with
varying mechanism as well as a large range of different number
of coppers involved.[9,10,13,15,18,23-27] Here we do not wish to add to
the confusion by proposing one active site for Cu-MAZ, this study,
however, allows constraints to be put onto the proposed active
site based on experimental evidence. The mechanism must
involve a Cu(II) to Cu(I) coupling with two electrons, and the
number of coppers involved is very close to two.
[15] S. Grundner, M. A. C. Markovits, G. Li, M. Tromp, E. A. Pidko, E. J. M.
Hensen, A. Jentys, M. Sanchez-Sanchez, J. A. Lercher, Nat. Commun.
2015, 6, 7546.
[16] V. L. Sushkevich, D. Palagin, M. Ranocchiari, J. A. van Bokhoven,
Science 2017, 356, 523–527
[17] D. K. Pappas, E. Borfecchia, M. Dyballa, I. Pankin, K. A. Lomachenko,
A. Martini, M. Signorile, S. Teketel, B. Arstad, G. Berlier, C. Lamberti, S.
Bordiga, U. Olsbye, K. Lillerud, S. Svelle, P. Beato, J. Am. Chem. Soc.,
2017, 139, 14961-14975.
In conclusion, Cu-MAZ provides a superior environment for
the selective conversion of methane to methanol that results in
higher selectivity and high methanol yields than have previously
been reported. Furthermore, its copper-dependent behavior and
remarkable selectivity allows progress in our fundamental
scientific understanding on how this copper zeolite (Cu-MAZ)
converts methane to methanol which must involve two electrons
and coppers.
[18] J. S. Woertink, P. J. Smeets, M. H. Groothaert, M. A. Vance, B. F. Sels,
R. A. Schoonheydt, E. I. Solomon, Proc. Natl. Acad. Sci. 2009, 106,
18908–18912.
[19] K. Narsimhan, K. Iyoki, K. Dinh, Y. Román-Leshkov, ACS Cent. Sci. 2016,
2, 424–429.
[20] P. Tomkins, A. Mansouri, S. E. Bozbag, F. Krumeich, M. B. Park, E. M.
C. Alayon, M. Ranocchiari, J. A. van Bokhoven, Angew. Chemie - Int. Ed.
2016, 55, 5557–5561.
[21] M. A. C. Markovits, A. Jentys, M. Tromp, M. Sanchez-Sanchez and J. A.
Lercher, Top. Catal. 2016, 59, 1554–1563.
[22] A. R. Kulkarni, Z. Zhao, S. Siahrostami, J. K. Nørskov, F. Studt, Catal.
Sci. Technol. 2017,8, 114-123.
Acknowledgements
[23] E. M. C. Alayon, M. Nachtegaal, A. Bodi, M. Ranocchiari, J. A. van
Bokhoven, Phys. Chem. Chem. Phys. 2015, 17, 7681–7693.
[24] P. Vanelderen, B. Snyder, M. Tsai, R. Hadt, J. Vancauwehbergh, O.
Coussens, R. Schoonheydt, B. Sels, E. Solomon, J. Am. Chem. Soc.
2015, 137, 6383-6392.
The authors would like to thank Dr. Hermann Emerich at the
Swiss Norwegian beamline (BM 31) as well as Dipanjan Banerjee
and Alessandro Longo at the Dutch Belgian beamline (BM26) at
the European Synchrotron Radiation Facility (ESRF). For
methanol extraction and GC calibration, Patrik Zimmerman at the
Paul Scherrer Institute was a tremendous help. We also thank
Petr Sot, Jordan Meyet, Jerick Imbao, Manoj Ravi, and Fernando
Robles-Mendez for their help during beamtimes. Zixing Ye for her
help in the synthesis of additional omega samples and Adelaide
[25] K. D. Vogiatzis, G. Li, E. J. M. Hensen, L. Gagliardi, E. A. Pidko, J. Phys.
Chem. C 2017, 121, 22295–22302.
[26] D. Palagin, A. J. Knorpp, A. B. Pinar, M. Ranocchiari, J. A. van Bokhoven,
Nanoscale 2017, 9, 1144–1153.
[27] V. L. Sushkevich and J. van Bokhoven, Catal. Sci. Technol. 2018, 8,
4141–4150
This article is protected by copyright. All rights reserved.