Insertion of O
2
into Pd(II)-Me
A R T I C L E S
of alcohols and alkyl hydroperoxides from main group organo-
nisms have been evaluated in relation to the experimentally
determined rate law and a viable mechanism for this reaction is
proposed. Important implications for the development of catalysts
for the functionalization of alkanes that could proceed via an
oxygen insertion reaction are also discussed.
18
metallics, the epoxidation of alkenes via in situ generated zinc
19
20
alkylperoxides, and the use of alkylboranes as radical initiators.
Autoxidation reactions of this type involving late transition metal
complexes could be particularly valuable due to the capacity of
late transition metals to generate metal alkyls by activation of C-H
21
Results
bonds. The coupling of these two transformations could be a
powerful combination for alkane functionalization.
Reaction of (bipy)PdMe
2
(1) with O
2
. When a solution of
Described herein is the first observation of the insertion of O
into a Pd(II)-Me bond, forming a Pd(II) alkylperoxide complex.
The reaction of (bipy)PdMe (1) with O to form (bipy)Pd-
Me(OOMe) (2) is a rare example of insertion of O into a late
transition metal-alkyl bond, and represents significant progress
toward the development of a “palladium oxygenase” paradigm.
The results of mechanistic studies suggest that the reaction proceeds
by a radical chain process. Several possible radical chain mecha-
2
(bipy)PdMe (1) in degassed C D
heated at 50 °C for 18 h, < 5% decomposition occurred
(measured by integration of signals in H NMR spectra against
an internal standard), although traces of Pd black were visible.
6 6
However, when a solution of 1 in C D was exposed to oxygen
(1-10 atm) at room temperature, the novel methylperoxide
species (bipy)PdMe(OOMe) (2) was formed in yields of up to
ca. 70% as determined by NMR spectroscopy (eq 1). Experi-
ments in which independently prepared (bipy)PdMe(OOMe) (2)
2
6 6
under reduced pressure was
1
2
2
2
2
2
(
15) For representative examples involving different metals, see the
following. Lithium: (a) Panek, E. J.; Whitesides, G. M. J. Am. Chem.
Soc. 1972, 94, 8768. Magnesium: (b) Walling, C.; Cioffari, A. J. Am.
Chem. Soc. 1970, 92, 6609. (c) Garst, J. F.; Smith, C. D.; Farrar, A. C.
J. Am. Chem. Soc. 1972, 94, 7707. Titanium, zirconium, hafnium: (d)
Blackburn, T. F.; Labinger, J. A.; Schwartz, J. Tetrahedron Lett. 1975,
(
see below) was added to solutions of the product formed in
the reaction between 1 and O unambiguously confirmed the
2
identity of the product as the methylperoxide derivative 2. It
1
was also found that the H NMR chemical shifts of 2 are very
similar to those of the methoxide derivative (bipy)PdMe(OMe)
1
6, 3041. (e) Lubben, T. V.; Wolczanski, P. T. J. Am. Chem. Soc.
(3). Notably, addition of 3 to the same product solutions clearly
1
987, 109, 424. (f) Brindley, P. B.; Scotton, M. J. J. Chem. Soc., Perkin
Trans. 2 1981, 419. (g) Ryan, D. A.; Espenson, J. H. J. Am. Chem.
Soc. 1982, 104, 704. (h) Hess, A.; H o¨ rz, M. R.; Liable-Sands, L. M.;
Lindner, D. C.; Rheingold, A. L.; Theopold, K. H. Angew. Chem.,
Int. Ed. 1999, 38, 166. (i) Atkinson, J. M.; Brindley, P. B. J.
Organomet. Chem. 1991, 411, 139. Tungsten: (j) Parkin, G.; Bercaw,
J. E. J. Am. Chem. Soc. 1989, 111, 391. (k) Chen, T.; Zhang, X.-H.;
Wang, C.; Chen, S.; Wu, Z.; Li, L.; Sorasaenee, K. R.; Diminnie,
J. B.; Pan, H.; Guzei, I. A.; Rheingold, A. L.; Wu, Y.-D.; Xue, Z.-L.
Organometallics 2005, 24, 1214. Iron: (l) Arasasingham, R. D.; Balch,
A. L.; Cornman, C. R.; Latos-Grazynski, L. J. Am. Chem. Soc. 1989,
demonstrated that 3 was not formed in the oxygenation reaction.
1
11, 4357. Cadmium: (m) Alexandrov, Y. A.; Lebedev, S. A.;
Independent Synthesis of (bipy)PdMe(OOMe) (2) and
Confirmation of Structure. The palladium(II) methylperoxide
complex 2 can be independently prepared by the reaction of the
palladium(II) methoxide complex 3 or of the hydroxide complex
Kuznetsova, N. V.; Razuvaev, G. A. J. Organomet. Chem. 1979, 177,
9
1
1. Boron: (n) Allies, P. G.; Brindley, P. B. J. Chem. Soc., B 1969,
126. (o) Davies, A. G.; Ingold, K. U.; Roberts, B. P.; Tudor, R.
J. Chem. Soc., B 1971, 698. (p) Korcek, S.; Watts, G. B.; Ingold,
K. U. J. Chem. Soc., Perkin Trans. 2 1972, 242. (q) Rensch, R.;
Friebolin, H. Chem. Ber. 1977, 110, 2189. Various metals: (r) Davies,
A. G.; Roberts, B. P. J. Chem. Soc., B 1968, 1074. (s) Brindley, P. B.;
Hodgson, J. C. J. Organomet. Chem. 1974, 65, 57. (t) M o¨ ller, M.;
Husemann, M.; Boche, G. J. Organomet. Chem. 2001, 624, 47.
16) Some metal alkylperoxide complexes resulting from the insertion of
(bipy)PdMe(OH) (4) with MeOOH (Scheme 1). Complexes 3 and
4
were prepared from the known iodide derivative (bipy)PdMe(I)
23
(5). The reaction of 5 with silver trifluoromethanesulfonate and
sodium methoxide in methanol cleanly generated the methoxide
(
1
complex 3 (Scheme 1). The H NMR data for 3 (in CD
3
OD)
O
2
into M-R bonds have been characterized crystallographically.
Magnesium: (a) Han, R.; Parkin, G. J. Am. Chem. Soc. 1992, 114,
48. (b) Bailey, P. J.; Coxall, R. A.; Dick, C. M.; Fabre, S.; Henderson,
matched that previously reported by van Koten and co-workers,
who prepared 3-d by dissolving (bipy)PdMe(OCH(CF ) in
OD. The new hydroxide complex 4 was obtained by addition
of H O to solutions of 3 in benzene (Scheme 1).
7
3 2
)
3
L. C.; Herber, C.; Liddle, S. T.; Lorono-Gonzalez, D.; Parkin, A.;
Parsons, S. Chem.sEur. J. 2003, 9, 4820. Zinc: (c) Lewinski, J.;
Suwala, K.; Kubisiak, M.; Ochal, Z.; Justyniak, I.; Lipkowski, J.
Angew. Chem., Int. Ed. 2008, 47, 7888. Aluminum: (d) Lewinski, J.;
Zachara, J.; Gos, P.; Grabska, E.; Kopec, T.; Madura, I.; Marciniak,
W.; Prowotorow, I. Chem.sEur. J. 2000, 6, 3215. Gallium: (e) Power,
M. B.; Cleaver, W. M.; Apblett, A. W.; Barron, A. R.; Ziller, J. W.
Polyhedron 1992, 11, 477. Indium: (f) Cleaver, W. M.; Barron, A. R.
J. Am. Chem. Soc. 1989, 111, 8966.
24
CD
3
2
Complex 2 could be efficiently synthesized by a variety of
routes involving the use of methyl hydroperoxide. Since
MeOOH is not commercially available, it was obtained by
methylation of hydrogen peroxide with dimethyl sulfate under
(
17) Noweck, K.; Grafahrend, W. Fatty alcohols. In Ullmann’s Encyclo-
pedia of Industrial Chemistry, 7th ed.; Wiley-VCH: New York, 2007
Scheme 1
(
electronic release).
(
18) (a) Walling, C.; Buckler, S. A. J. Am. Chem. Soc. 1955, 77, 6032. (b)
Lambert, G. J.; Duffley, R. P.; Dalzell, H. C.; Razdan, R. K. J. Org.
Chem. 1982, 47, 3350. (c) Brown, H. C.; Midland, M. Tetrahedron
1
987, 43, 4059. (d) Cadot, C.; Dalko, P. I.; Cossy, J.; Ollivier, C.;
Chuard, R.; Renaud, P. J. Org. Chem. 2002, 67, 7193. (e) Klement,
I.; L u¨ tjens, H.; Knochel, P. Tetrahedron 1997, 53, 9135. (f) Brown,
H. C.; Midland, M. M. Angew. Chem., Int. Ed. 1972, 11, 692.
19) (a) Yamamoto, K.; Yamamoto, N. Chem. Lett. 1989, 1149. For
asymmetric variants, see: (b) Enders, D.; Kramps, L.; Zhu, J.
Tetrahedron: Asymmetry 1998, 9, 3959. (c) Hussain, M. M.; Walsh,
P. J. Acc. Chem. Res. 2008, 41, 883.
(
(
(
20) Ollivier, C.; Renaud, P. Chem. ReV. 2001, 101, 3415.
21) (a) ActiVation and Functionalization of C-H Bonds; Goldberg, K. I.,
Goldman, A. S., Eds. ACS Symposium Series 885; American Chemical
Society: Washington, DC, 2004. (b) Handbook of C-H Transforma-
tions; Dyker, G., Ed.; Wiley-VCH: Weinheim, Germany, 2005.
J. AM. CHEM. SOC. 9 VOL. 131, NO. 43, 2009 15803