Analytical Chemistry
Article
(12) Xue, Y.; Xiong, J.; Shi, H. L.; Liu, Y. M.; Qing, L. S.; Liao, X.
Anal. Bioanal. Chem. 2013, 405, 8807−8817.
that the small peak at tR ≈ 17 min was only observed in the
presence of NH2-PMO−microsome nanoreactors, demonstrat-
ing that more metabolites can be generated using the NH2-
PMO−microsome nanoreactor. Therefore, the metabolic
reaction based on the nanoreactor approach may provide
more information on the drug metabolism compared to the
conventional bulk solution in vitro metabolic reaction, which is
of great value in identifying reactive metabolites of drugs to
predict possible toxicity in the early stage of drug development.
All these features render NH2-PMO a promising host for rapid
and accurate in vitro drug metabolic reaction.
(13) Yuan, Q.; Wu, Y.; Wang, J.; Lu, D. Q.; Zhao, Z. L.; Liu, T.;
Zhang, X. B.; Tan, W. H. Angew. Chem., Int. Ed. 2013, 52, 13965−
13969.
(14) Zhao, X. H.; Gong, L.; Zhang, X. B.; Fu, T.; Hu, R.; Tan, W. H.;
Yu, R. Q. Anal. Chem. 2013, 85, 3614−3620.
(15) Chen, L. Q.; Xiao, S. J.; Hu, P. P.; Peng, L.; Ma, J.; Luo, L. F.; Li,
Y. F.; Huang, C. Z. Anal. Chem. 2012, 84, 3099−3110.
(16) Hartmann, M.; Jung, D. J. Mater. Chem. 2010, 20, 844−857.
(17) Gao, P. F.; Zheng, L. L.; Liang, L. J.; Yang, X. X.; Li, Y. F.;
Huang, C. Z. J. Mater. Chem. B 2013, 1, 3202−3208.
(18) Wang, J.; Gao, P. P.; Yang, X. X.; Wang, T. T.; Huang, C. Z. J.
Mater. Chem. B 2014, 2, 4379−4386.
CONCLUSIONS
■
(19) Hartmann, M.; Kostrov, X. Chem. Soc. Rev. 2013, 42, 6277−
6289.
(20) Li, L. L.; Xie, M. Y.; Wang, J.; Li, X. Y.; Wang, C.; Yuan, Q.;
Pang, D. W.; Lu, Y.; Tan, W. H. Chem. Commun. 2013, 49, 5823−
5825.
In summary, we have demonstrated that drug metabolism can
be effectively carried out in the NH2-PMO−microsome
nanoreactor. Due to the amphiphilic and positive property of
NH2-PMO, the resulting nanochannels can host multiple
enzymes and substrates, where a highly efficient reaction can
occur. Compared with other methods, the combination of the
NH2-PMO−microsome nanoreactor with HPLC−MS provides
a simple, rapid, and accurate strategy for in vitro drug
metabolism. It is anticipated that the metabolic reaction
based on the nanoreactor strategy would lead to promising
advances in drug discovery and development.
(21) Hudson, S.; Cooney, J.; Magner, E. Angew. Chem., Int. Ed. 2008,
47, 8582−8594.
(22) Bi, H. Y.; Qiao, L.; Busnel, J. M.; Liu, B. H.; Girault, H. H. J.
Proteome Res. 2009, 8, 4685−4692.
(23) Qian, K.; Wan, J. J.; Huang, X. D.; Yang, P. Y.; Liu, B. H.; Yu, C.
Z. Chem.Eur. J. 2010, 16, 822−828.
(24) Gan, J. R.; Zhu, J.; Yan, G. Q.; Liu, Y.; Yang, P. Y.; Liu, B. H.
Anal. Chem. 2012, 84, 5809−5815.
(25) Qian, K.; Wan, J. J.; Qiao, L.; Huang, X. D.; Tang, J. W.; Wang,
Y. H.; Kong, J. L.; Yang, P. Y.; Yu, C. Z.; Liu, B. H. Anal. Chem. 2009,
81, 5749−5756.
ASSOCIATED CONTENT
* Supporting Information
■
S
(26) Gan, J. R.; Qian, K.; Wan, J. J.; Qiao, L.; Guo, W. C.; Yang, P. Y.;
Girault, H. H.; Liu, B. H. Proteomics 2013, 13, 3117−3123.
(27) Mie, Y.; Suzuki, M.; Komatsu, Y. J. Am. Chem. Soc. 2009, 131,
6646−6647.
Detailed description of the LC−MS experiments, data for the
adsorption kinetics of the substrates by NH2-PMO and
nifedipine sustained-release tablet metabolism, and mass
spectra of nifedipine and testosterone metabolism. This
material is available free of charge via the Internet at http://
(28) Krishnan, S.; Wasalathanthri, D.; Zhao, L. L.; Schenkman, J. B.;
Rusling, J. F. J. Am. Chem. Soc. 2011, 133, 1459−1465.
(29) Xu, X.; Wei, W.; Huang, M. H.; Yao, L.; Liu, S. Q. Chem.
Commun. 2012, 48, 7802−7804.
(30) Yoshioka, K.; Kato, D.; Kamata, T.; Niwa, O. Anal. Chem. 2013,
85, 9996−9999.
(31) Hu, Y. F.; Qian, K.; Yuan, P.; Wang, Y. H.; Yu, C. Z. Mater. Lett.
2011, 65, 21−23.
(32) Descalzo, A. B.; Jimenez, D.; Marcos, M. D.; Martinez-Manez,
R.; Soto, J.; EI Haskouri, J.; Guillem, C.; Beltran, D.; Amoros, P.;
Borrachero, M. V. Adv. Mater. 2002, 14, 966−969.
(33) Sohl, C. D.; Cheng, Q.; Guengerich, F. P. Nat. Protoc. 2009, 4,
1252−1257.
(34) Ngui, J. S.; Chen, Q.; Shou, M.; Wang, R. W.; Stearns, R. A.;
Baillie, T. A.; Tang, W. Drug Metab. Dispos. 2001, 29, 877−886.
(35) Ozisik, H.; Kantarci, Z. Spectrosc. Lett. 2005, 38, 505−519.
(36) Wan, J. J.; Qian, K.; Zhang, J.; Liu, F.; Wang, Y. H.; Yang, P. Y.;
Liu, B. H.; Yu, C. Z. Langmuir 2010, 26, 7444−7450.
(37) Wang, X. D.; Li, J. L.; Lu, Y.; Chen, X.; Huang, M.; Chowbay,
B.; Zhou, S. F. J. Chromatogr., B 2007, 852, 534−544.
(38) Guengerich, F. P.; Bartleson, C. J. Principles and Methods of
Toxicology, 5th ed.; CRC Press: Boca Raton, FL, 2008; pp 1981−2048.
(39) Aksu, Y.; Frasca, S.; Wollenberger, U.; Driess, M.; Thomas, A.
Chem. Mater. 2011, 23, 1798−1804.
(40) Krauser, J. A.; Voehler, M.; Tseng, L. H.; Schefer, A. B.;
Godejohann, M.; Guengerich, F. P. Eur. J. Biochem. 2004, 271, 3962−
3969.
(41) Choi, M. H.; Skipper, P. L.; Wishnok, J. S.; Tannenbaum, S. R.
Drug Metab. Dispos. 2005, 33, 714−718.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Natural Science
Foundation of China (NSFC) (Grants 21175028 and
21375022) and 863 Project 2012AA020202.
REFERENCES
■
627.
(1) Lee, M. Y.; Dordick, J. S. Curr. Opin. Biotechnol. 2006, 17, 619−
(2) Munos, B. Nat. Rev. Drug Discovery 2009, 8, 959−968.
(3) Li, A. P. Drug Discovery Today 2001, 6, 357−366.
(4) Lee, M. Y.; Park, C. B.; Dordick, J. S.; Clark, D. S. Proc. Natl.
Acad. Sci. U.S.A. 2005, 102, 983−987.
(5) Geysen, H. M.; Schoenen, F.; Wagner, D.; Wagner, R. Nat. Rev.
Drug Discovery 2003, 2, 222−230.
(6) Ma, S.; Chowdhury, S. K. Anal. Chem. 2011, 83, 5028−5036.
(7) Gao, D.; Li, H. F.; Wang, N. J.; Lin, J. M. Anal. Chem. 2012, 84,
9230−9237.
(8) Bajrami, B.; Zhao, L.; Schenkman, J. B.; Rusling, J. F. Anal. Chem.
2009, 81, 9921−9929.
(9) Carlson, T. J.; Fishe, M. B. J. Comb. Chem. 2008, 11, 258−264.
(10) Jenkins, K. M.; Angeles, R.; Quintos, M. T.; Xu, R.; Kassel, D. B.
J. Pharm. Biomed. Anal. 2004, 34, 989−1004.
(11) Bajrami, B.; Hvastkovs, E. G.; Jensen, G. C.; Schenkman, J. B.;
Rusling, J. F. Anal. Chem. 2008, 80, 922−932.
10876
dx.doi.org/10.1021/ac503024h | Anal. Chem. 2014, 86, 10870−10876