ACCEPTED MANUSCRIPT
[5] Y. Yin, Y. Lu, P. Wu and C. Cai, Direct electrochemistry of redox proteins and enzymes
promoted by carbon nanotubes, (2005) Sensors 5: 220-234.
[6] Z. Wang, H. Lei, R. Cao, M. Zhang, Cobalt corrole on carbon nanotube as a synergistic
catalyst for oxygen reduction reaction in acid media, (2015) Electrochim Acta 171:81–88.
[7] W. Zhang, A. U. Shaikh, E. Y. Tsui, and T. M. Swager, Cobalt porphyrin functionalized
carbon nanotubes for oxygen reduction, (2009) Chemistry of Materials, 21(14), 3234–
3241.
[8] M. E. Lipinska, S. L. H. Rebelo, and C. Freire, Iron (III) porphyrin anchored onto
organosilylated multiwalled carbon nanotubes as an active catalyst for epoxidation
reactions under mild conditions, (2014) Journal of Materials Science, 49(4), 1494–1505.
[9] W. Wei, H. H. Jin, G. C. Zhao, A reagentless nitrite biosensor based on direct electron
transfer of hemoglobin on a room temperature ionic liquid/carbon nanotube-modified
electrode, (2009) Microchim Acta, 164, 167-171.
[10] D. M. Guldi, G. M. A. Rahman, N. Jux, D. Balbinot, N. Tagmatarchis & M. Prato,
Multiwalled carbon nanotubes in donor-acceptor nanohybrids - towards long-lived electron
transfer products, (2005) Chem. Commun., 2038–2040.
[11] C. Ehli, D. M. Guldi, M. A. Herranz, N. Martín, S. Campidelli, & M. Prato, Pyrene-
tetrathiafulvalene supramolecular assembly with different types of carbon nanotubes,
(2008) Journal of Materials Chemistry 18(13), 1498.
[12] W. Lu, N. Li, W. Chen and Y. Yao, The role of multiwalled carbon nanotubes in enhancing
the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes,
(2009) Carbon 47, 3337
[13] X. Wang, B. Wang, J. Zhong, F. Zhao, N. Han, W. Huang, M. Zeng, J. Fan and Y. Li, Iron
polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance
electrocatalyst for oxygen reduction reaction, (2016) Nano Research 9, 1497 .
[14] M. M. Stylianakis, D. Konios, G. Kakavelakis, G. Charalambidis, E. Stratakis, A. G.
Coutsolelos, E. Kymakis and S. H. Anastasiadis, Efficient ternary organic photovoltaics
incorporating grapheme -based porphyrin molecule as a universal electron cascade
material, (2015) Nanoscale 7, 17827.
[15] L. Lu, T. Xu, W. Chen, E. S. Landry and L. Yu, Ternary blend polymer solar cells with
enhanced power conversion efficiency, (2014) Nat. Photonics, 8, 716.
[16] J. Kesters, P. Verstappen, M. Kelchtermans, L. Lutsen, D. Vanderzande and W. Maes,
Porphyrin-based bulk heterojunction organic photovoltaics: The rise of the colors of life,
(2015) Adv. Energy Mater., 5, 1500218.
[17] D. M. Guldi and M. Prato, Excited-state properties of C60 fullerene derivatives, (2000)
Acc. Chem. Res., 33, 695.
[18] A.Wang, J. Song, Z. Huang, Y. Song, W. Yu, H. Dong and J. Shao, Multi-walled carbon
nanotubes covalently functionalized by axially coordinated metal-porphyrins: Facile
syntheses and temporally dependent optical performance, (2016) Nano Research 9(2), 458-
472.
[19] A. Wang, Y. Fang, W. Yu, L. Long, Y. Song, W. Zhao, C. Zhang, Allyloxyporphyrin-
functionalized multiwalled carbon nanotubes: Synthesis by radical polymerization and
enhanced optical-limiting properties, (2014) Chemistry - An Asian Journal 9(2), 639–648.
[20] A. Wang, Y. Fang, L. Long, Y. Song, W. Yu, W. Zhao, M. P. Cifuentes, M. G. Humphery
and C. Zhang, Facile synthesis and enhanced nonlinear optical properties of porphyrin-
functionalized multi-walled carbon nanotubes, (2013) Chem. Eur. J. 15 3882.