Full Paper
2JP, C = 8.7 Hz, o-CPh), 126.7 (d, 2JC,P = 3.0 Hz, m-CPh), 125.5 (m-CDipp), CH(CH3)2] ppm. A 13C NMR spectrum could not be recorded be-
3
125.4 (d, JC,P = 5.0 Hz, C=C-N), 29.9 (CHMe2), 26.0 [CH(CH3)2], 22.7 cause of the low solubility of 5b. 31P{1H} NMR ([D8]THF, 81 MHz):
[CH(CH3)2] ppm. 31P{1H} NMR ([D8]THF, 121 MHz): δ = 57.7 (s, 1JP, W
=
δ = –40.2 (s) ppm. C38H41N2O5PMo (732.69): calcd. C 62.29, H 5.64,
120.5 Hz) ppm. C38H41N2O5PW (820.57): calcd. C 55.62, H 5.04, N
N 3.82; found C 62.22, H 5.69, N 3.77. IR: ν(CO) = 2055 (m), 1970 (w),
˜
3.41; found C 55.89, H 4.83, N 2.97. IR: ν(CO) = 2054 (m), 1963 (w),
1915 (s), 1864 (s) cm–1
.
˜
1909 (s), 1860 (s) cm–1
.
Acknowledgments
This work was supported by the Deutsche Forschungsgemein-
schaft (DFG) through grant TA 189/16-1.
[(IPr·PMes)W(CO)5] (4c): Carbene–phosphinidene adduct 1c
(0.054 g, 0.100 mmol) and [(Me3N)W(CO)5] (0.038 g, 0.100 mmol)
were dissolved in THF (10 mL). The reaction mixture was stirred for
16 h at 50 °C. All volatile components were removed under vacuum,
and the residue was washed with n-hexane (3 mL). The remaining
solid was dissolved in THF, and the solution was filtered through a
pad of aluminum oxide. The removal of the solvent gave 4c as a
yellow solid, yield 0.016 g (18 % based on 1c). 1H NMR ([D8]THF,
200 MHz): δ = 7.54–7.22 (br m, 8 H, NCH, m, p-CDippH), 6.59 (s, 2 H,
Keywords: P ligands · Carbonyl ligands · Rhodium ·
Tungsten · IR spectroscopy
[1] a) A. J. Arduengo, H. V. Rasika Dias, J. C. Calabrese, Chem. Lett. 1997,
143–144; b) A. J. Arduengo III, J. C. Calabrese, A. H. Cowley, H. V. R. Dias,
J. R. Goerlich, W. J. Marshall, B. Riegel, Inorg. Chem. 1997, 36, 2151–2158.
[2] O. Back, M. Henry-Ellinger, C. D. Martin, D. Martin, G. Bertrand, Angew.
Chem. Int. Ed. 2013, 52, 2939–2943; Angew. Chem. 2013, 125, 3011.
[3] a) D. Himmel, I. Krossing, A. Schnepf, Angew. Chem. Int. Ed. 2014, 53,
370–374; Angew. Chem. 2014, 126, 378; b) G. Frenking, Angew. Chem. Int.
Ed. 2014, 53, 6040–6046; Angew. Chem. 2014, 126, 6152; c) D. Himmel,
I. Krossing, A. Schnepf, Angew. Chem. Int. Ed. 2014, 53, 6047–6048;
Angew. Chem. 2014, 126, 6159.
3
m-CMesH), 2.76 (sept, JH,H = 6.8 Hz, 4 H, CHMe2), 2.25 [s, 6 H, o-
3
C
Mes(CH3)], 2.10 [s, 3 H, p-CMes(CH3)], 1.34 [d, JH,H = 6.8 Hz, 12 H,
CH(CH3)2], 1.09 [d, 3JH,H = 6.8 Hz, 12 H, CH(CH3)2] ppm. 13C{1H} NMR
([D8]THF, 75 MHz): δ = 201.6 (CO), 149.5 (o-CDipp), 145.5 (d, JC,P
1
=
12.8 Hz, PCMes), 142.9 (NCDipp), 139.5 (p-CMes), 138.2 (o-CMes), 134.0
3
(m-CMes), 132.1 (d, JC,P = 5.3 Hz, C=C–N), 128.8 (p-CDipp), 128.5 (m-
C
Dipp), 127.9 (p-CDipp), 32.5 (o-CH3,Mes), 29.1 (CHMe2), 28.6
[CH(CH3)2], 25.4 [CH(CH3)2], 23.6 (p-CH3,Mes) ppm. 31P{1H} NMR
1
([D8]THF, 81 MHz):
δ
=
–95.1 (s, JP, W
=
159.5 Hz) ppm.
[4] a) P. Rosa, C. Gouverd, G. Bernardinelli, T. Berclaz, M. Geoffroy, J. Phys.
Chem. A 2003, 107, 4883–4892; b) G. Frison, A. Sevin, J. Organomet.
Chem. 2002, 643–644, 105–111.
C41H47N2O5PW (862.65): calcd. C 57.09, H 5.49, N 3.25; found C
55.74, H 5.75, N 3.65. IR: ν(CO) = 2058 (m), 1963 (w), 1911 (s), 1870
˜
(s) cm–1
.
[5] L. Weber, Eur. J. Inorg. Chem. 2000, 2425–2441.
[6] A. J. Arduengo III, C. J. Carmalt, J. A. C. Clyburne, A. H. Cowley, R. Pyati,
Chem. Commun. 1997, 981–982.
[7] a) K. Schwedtmann, M. H. Holthausen, K.-O. Feldmann, J. J. Weigand,
Angew. Chem. Int. Ed. 2013, 52, 14204; Angew. Chem. 2013, 125, 14454–
14458; b) M. Alcarazo, K. Radkowski, G. Mehler, R. Goddard, A. Fürstner,
Chem. Commun. 2013, 49, 3140.
[8] V. A. K. Adiraju, M. Yousufuddin, H. V. R. Dias, Dalton Trans. 2015, 44,
4449–4454.
[9] A. Doddi, D. Bockfeld, P. G. Jones, M. Tamm, Chem. Eur. J. 2015, 21,
16178–16189.
[10] T. G. Larocque, G. G. Lavoie, New J. Chem. 2014, 38, 499–502.
[11] a) K. Hansen, T. Szilvási, B. Blom, E. Irran, M. Driess, Chem. Eur. J. 2014,
20, 1947–1956; b) K. Hansen, T. Szilvási, B. Blom, S. Inoue, J. Epping, M.
Driess, J. Am. Chem. Soc. 2013, 135, 11795–11798.
[12] A. M. Tondreau, Z. Benkö, J. R. Harmer, H. Grützmacher, Chem. Sci. 2014,
5, 1545–1554.
[(IPr·PH)Mo(CO)5]·THF (5a·THF): Mo(CO)6 (0.055 g, 0.208 mmol)
was suspended in THF (20 mL), and the suspension was degassed
with three freeze–pump–thaw cycles. The suspension was heated
under reflux for 6 h. After the addition of 1a (0.087 g, 0.208 mmol)
in THF (10 mL) to the hot solution, the mixture was stirred at room
temperature overnight. All volatiles were then removed under vac-
uum. The remaining solid was dissolved in THF, and the solution
was filtered through a pad of aluminum oxide. The solvent was
removed to afford 5a·THF as a pale green solid, yield 0.102 g (67 %
based on 1a). 1H NMR ([D8]THF, 200 MHz): δ = 7.59–7.35 (m, 8 H,
3
NCH, p-CDippH, m-CDippH), 2.80 (sept, JH,H = 6.8 Hz, 4 H, CHMe2),
1
3
2.18 (d, JH,P = 211.6 Hz, 1 H, PH), 1.44 [d, JH,H = 6.8 Hz, 12 H,
CH(CH3)2], 1.16 [d, 3JH,H = 6.8 Hz, 12 H, CH(CH3)2] ppm. 13C{1H} NMR
([D8]THF, 75 MHz): δ = 208.7 (CO), 176.2 (d, JC,P = 83.1 Hz, CNHCP),
1
[13] M. Cicač-Hudi, J. Bender, S. H. Schlindwein, M. Bispinghoff, M. Nieger, H.
Grützmacher, D. Gudat, Eur. J. Inorg. Chem. 2016, 649–658.
[14] L. Liu, D. A. Ruiz, F. Dahcheh, G. Bertrand, Chem. Commun. 2015, 51,
12732–12735.
[15] A. Doddi, D. Bockfeld, T. Bannenberg, P. G. Jones, M. Tamm, Angew. Chem.
Int. Ed. 2014, 53, 13568–13572; Angew. Chem. 2014, 126, 13786.
[16] a) L. Weber, S. Kleinebekel, A. Rühlicke, H.-G. Stammler, B. Neumann, Eur.
J. Inorg. Chem. 2000, 1185–1191; b) L. Weber, O. Kaminski, H.-G. Stamm-
ler, B. Neumann, V. D. Romanenko, Z. Naturforsch. B 1993, 48, 1784–1794.
[17] M. Bispinghoff, A. M. Tondreau, H. Grützmacher, C. A. Faradji, P. G. Pringle,
Dalton Trans. 2016, 45, 5999–6003.
[18] A. Fürstner, M. Alcarazo, H. Krause, C. W. Lehmann, J. Am. Chem. Soc.
2007, 129, 12676–12677.
[19] A. R. Chianese, X. Li, M. C. Janzen, J. W. Faller, R. H. Crabtree, Organo-
metallics 2003, 22, 1663–1667.
[20] T. Dröge, F. Glorius, Angew. Chem. Int. Ed. 2010, 49, 6940–6952; Angew.
Chem. 2010, 122, 7094.
[21] J. Huheey, E. Keiter, R. Keiter, Anorganische Chemie: Prinzipien von Struktur
und Reaktivität, de Gruyter, Berlin, 1995.
146.7 (o-CDipp), 134.2 (NCDipp), 131.8 (p-CDipp), 125.8 (m-CDipp), 125.4
(d, 3JP, C = 2.9 Hz, C=C–N), 68.2 (coordinated THF), 29.7 (CHMe2), 26.4
(coordinated THF), 25.7 [CH(CH3)2], 23.2 [CH(CH3)2] ppm. 31P NMR
1
([D8]THF, 81 MHz):
δ
=
147.1 (d, JP, H
=
211.6 Hz) ppm.
C36H45N2O6PMo (728.70): calcd. C 59.34, H 6.22, N 3.84; found C
60.37, H 6.35, N 4.03. IR: ν(CO) = 2057 (m), 1970 (w), 1910 (s), 1866
˜
(s) cm–1
.
[(IPr·PPh)Mo(CO)5] (5b): Mo(CO)6 (0.055 g, 0.210 mmol) was sus-
pended in THF (25 mL), and the suspension was degassed with
three freeze–pump–thaw cycles. The suspension was heated under
reflux for 8 h. To this hot solution, 1b (0.104 g, 0.210 mmol) in THF
(10 mL) was added, and the mixture was stirred at room tempera-
ture for 16 h. All volatile components were removed under vacuum.
The remaining solid was dissolved in THF, and the solution was
filtered through a pad of aluminum oxide. The removal of the sol-
vent gave the air-stable complex 5b as a yellow solid, yield 0.092 g
(60 % based on 1b). 1H NMR ([D8]THF, 200 MHz): δ = 7.45 (s, 2 H,
[22] a) F. Mathey, Z. Duan, Dalton Trans. 2016, 45, 1804–1809; b) F. Mathey,
Dalton Trans. 2007, 1861; c) F. Mathey, Angew. Chem. Int. Ed. 2003, 42,
1578–1604; Angew. Chem. 2003, 115, 1616; d) F. Mathey, Huy, H. T. Ngoc,
A. Marinetti, Helv. Chim. Acta 2001, 84, 2938–2957; e) F. Mathey, Angew.
Chem. Int. Ed. Engl. 1987, 26, 275–286; Angew. Chem. 1987, 99, 285.
3
3
NCH), 7.43 (t, JH,H = 7.7 Hz, 2 H, p-CDippH), 7.26 (d, JH,H = 7.7 Hz, 4
H, m-CDippH), 7.17–7.05 (m, 2 H, m-CPhH), 6.88–6.79 (m, 1 H, p-CPhH),
3
6.75–6.64 (m, 2 H, o-CPhH), 2.97 (sept, JH,H = 6.7 Hz, 4 H, CHMe2),
3
1.36 [d, JH,H = 6.7 Hz, 12 H, CH(CH3)2], 1.12 [d, 3JH,H = 6.7 Hz, 12 H,
Eur. J. Inorg. Chem. 2016, 3704–3712
3711
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim