Paper
Journal of Materials Chemistry B
and Technology (MEXT) of Japan and JSPS Core-to-Core Program,
A. Advanced Research Networks.
Notes and references
1 (a) H. T. T. Duong, F. Hughes, S. Sagnella, M. Kavallaris,
A. Macmillan, R. Whan, J. Hook, T. P. Davi and C. Boyer, Mol.
Pharmceutics, 2012, 9, 3046–3061; (b) J. S. Basuki, H. T. T. Duong,
A. Macmillan, R. B. Erlich, L. Esser, M. C. Akerfeldt, R. M. Whan,
M. Kavallaris, C. Boyer and T. P. Davis, ACS Nano, 2013, 7,
10175–10189; (c) F. Kurniawansyah, H. T. T. Duong, L. T. Danh,
R. Mammucari, O. Vittorio, C. Boyer and N. Foster, Chem. Eng.,
2015, 279, 799–808; (d) A. E. Dunn, D. J. Dunn, A. Macmillan,
R. Whan, T. Stait-Gardner, W. S. Price, M. Lim and C. Boyer,
Polym. Chem., 2014, 5, 3311–3315; (e) M. J. Rust, M. Bates and
X. Zhuang, Nat. Methods, 2006, 3, 793–796; ( f ) B. Huang,
W. Q. Wang, M. Bates and X. W. Zhuang, Science, 2008, 319,
810–813.
2 E. Kuranaga and M. Miura, Trends Cell Biol., 2007, 17,
135–144.
3 M. Kato, Bunseki Kagaku, 2015, 64, 77–87.
4 K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenbock, A. Ting
and M. J. Schnitzer, J. Neurosci., 2006, 26, 10380–10386.
5 G. Mayer and A. Heckel, Angew. Chem., Int. Ed., 2006, 45,
4900–4921.
Fig. 5 (a–c) Confocal laser scanning micrographs of HeLa cells treated
with DAPI-containing nanoparticles (NPs) with (a) and without (b) visible
light irradiation and no encapsulated nanoparticles with irradiation (c).
(d) Quantitative analysis of fluorescence intensity.
¨
6 K. R. Thomas, K. R. Folger and M. R. Capecchi, Cell, 1986,
44, 419–428.
7 J. Xu, K. Jung, A. Atme, S. Shanmugam and C. Boyer, J. Am.
Chem. Soc., 2014, 136, 5508–5519.
from the endosome and remained in the cytoplasm. The release
of DAPI from nanoparticles and its subsequent distribution
throughout the cell occurred rapidly. The fluorescence intensity
was higher in the nucleus than in the cytoplasm, suggesting
that DAPI diffused freely and was concentrated in the nucleus
where most cellular DNA is localised. The fluorescence was not
observed in cells that internalised non-encapsulated nano-
particles with 3 min irradiation (Fig. 5c). These results indicate
that the spatiotemporal release within the cells of molecules
carried by the nanoparticles can be controlled by visible light.
8 (a) S. A. Hoffman and S. P. Stayton, Macromol. Symp., 2004, 207,
139–151; (b) J. Ge, E. Neofytou, T. J. Cahill, R. E. Beygui and
R. N. Zare, ACS Nano, 2012, 6, 227–233; (c) M. A. C. Stuart,
W. T. S. Huck, J. Genzer, M. Mu¨ller, C. Ober, M. Stamm,
G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban,
F. Winnik, S. Zauscher, I. Luzinov and S. Minko, Nat. Mater.,
2010, 9, 101–113; (d) A. P. Esser-Kahn, S. A. Odom, N. R. Sottos,
S. R. White and J. S. Moore, Macromolecules, 2011, 44,
5539–5553.
9 (a) S. Murayama and M. Kato, Anal. Chem., 2010, 82, 2186–2191;
(b) S. Murayama, F. Ishizuka, K. Takagi, H. Inoda, A. Sano,
T. Santa and M. Kato, Anal. Chem., 2012, 84, 1374–1379;
(c) F. Ishizuka, X. S. Liu, S. Murayama, T. Santa and M. Kato,
J. Mater. Chem. B, 2014, 2, 4153–4158.
Conclusions
We developed a BODIPY-derivatised monomer that was used to
prepare visible light-responsive nanoparticles. These were
internalised by cells without requiring surface modifications
such as a CPP and were induced to release cargo molecules by
irradiation with visible light. Although various light-responsive
nanoparticles have been developed to date, most respond only
to UV light. We expect that these light-responsive nanoparticles
can be more effective carriers of cargo molecules in deep
tissues that cannot be penetrated by UV light.
10 Y. Shibata, T. Santa and M. Kato, RSC Adv., 2015, 5,
65909–65912.
11 (a) T. Amamoto, T. Santa and M. Kato, Chem. Pharm. Bull.,
2014, 62, 649–653; (b) K. Takagi, S. Murayama, T. Sakai, M. Asai,
T. Santa and M. Kato, Soft Matter, 2014, 10, 3553–3559.
12 S. Murayama, B. Su, K. Okabe, A. Kishimura, K. Osada,
M. Miura, T. Funatsu, K. Kataoka and M. Kato, Chem.
Commun., 2012, 48, 8380–8382.
Acknowledgements
We thank Dr S. Fukuda (U. Tokyo) and Dr N. Kaji (Nagoya Univ.) 13 (a) S. Murayama, T. Nishiyama, K. Takagi, F. Ishizuka, T. Santa
for technical assistance with TEM measurements and in donating
the R8 peptide, respectively. This work was supported by grants
(Kakenhi) from the Ministry of Education, Culture, Sports, Science,
and M. Kato, Chem. Commun., 2012, 48, 11461–11463;
(b) S. Murayama, P. Kos, K. Miyata, K. Kataoka, E. Wagner and
M. Kato, Macromol. Biosci., 2014, 14, 626–631.
7432 | J. Mater. Chem. B, 2015, 3, 7427--7433
This journal is ©The Royal Society of Chemistry 2015