Inorganic Chemistry
Article
(8) Nonaqueous systems MCCs bearing bipyridine or phenanthro-
line ligands: (a) Matsuda, Y.; Morita, T. M.; Tanaka, K.; Okada, M.;
Matsumura-Inoue, T. Denki Kagaku 1985, 53, 632. (b) Matsuda, Y.;
Tanaka, K.; Okada, M.; Takasu, Y.; Morita, M.; Matsumura-Inoue, T. J.
Appl. Electrochem. 1988, 18, 909. (c) Morita, M.; Tanaka, Y.; Tanaka,
K.; Matsuda, Y.; Matsumura-Inoue, T. Bull. Chem. Soc. Jpn. 1988, 61,
2711. (d) Mun, J.; Lee, M.-J.; Park, J.-W.; Oh, D.-J.; Lee, D.-Y.; Doo,
S.-G. Electrochem. Solid-State Lett. 2012, 15, A80. (e) Chakrabarti, M.
H.; Dryfe, R. A. W.; Roberts, E. P. L. Electrochim. Acta 2007, 52, 2189.
(f) Kim, J.-H.; Kim, K. J.; Park, M.-S.; Lee, N. J.; Hwang, U.; Kim, H.;
Kim, Y.-J. Electrochem. Commun. 2011, 13, 997. (g) Chakrabarti, M.
H.; Lindfield Roberts, E. P.; Saleem, M. Int. J. Green Energy 2010, 7,
445. (h) Xing, X.; Zhang, D.; Li, Y. J. Power Sources 2015, 279, 205.
(i) Park, M.-S.; Lee, N. J.; Lee, S.-W.; Kim, K. J.; Oh, D.-J.; Kim, Y.-J.
ACS Appl. Mater. Interfaces 2014, 6, 10729.
(9) Patents about nonaqueous RFBs MCCs bearing bipyridine based
ligands: (a) Maly-Schreiber, M.; Whitehead, A. H. W.O. Patent
101284, September 13, 2007. (b) Sun, H.; Park, J.; Lee, D.; Son, S.
(Samsung Electronics Co., Ltd., KR). U.S. Patent 0195283, August 11,
2011. (c) Lee, M. J.; Lee, D.; Oh, D.; Park, J.; Hwang, S. (Samsung
Electronics Co., Ltd., KR). U.S. Patent 0107661, May 3, 2012. (d) Lee,
M.; Oh, D.; Hwang, S. (Sansung Electronics Co., Ltd., KR). Redox
Flow Battery. U.S. Patent 0171530, July 5, 2012. (e) Park, J.; Lee, M.;
Lee, D.; Oh, D. (Samsung Electronics Co., Ltd., KR). Redox Flow
Battery. U.S. Patent 0171541, July 5, 2012. (f) Mun, J.; Hwang, S.; Lee,
D.; Kim, Y.; Kwon, O.; Yim, T. (KRKR, Seoul National University
R&DB FoundationSamsung Electronics Co., Ltd., KRKR, Seoul
National University R&DB FoundationSamsung Electronics Co.,
Ltd.). Electrolyte for Redox Flow Battery and Redox Flow Battery
Including the Same. U.S. Patent 004819, January 3, 2013. (g) Park, J.;
OH, D.; Lee, D.; Lee, M. (Samsung Electronics Co., Ltd., KR).
Organic Electrolyte Solution and Redox Flow Battery Including the
Same. U.S. Patent 196,206, August 1, 2013. (h) Park, J.; OH, D.; Lee,
D.; Lee, M. (Samsung Electronics Co., Ltd., KR). Redox Flow Battery.
U.S. Patent 193,687, July 10, 2014.
(10) Nonaqueous MCCs bearing acetylacetonate ligands: (a) Yama-
mura, T.; Shiokawa, Y.; Yamana, H.; Moriyama, H. Electrochim. Acta
2002, 48, 43. (b) Liu, Q.; Sleightholme, A. E. S.; Shinkle, A. A.; Li, Y.;
Thompson, L. T. Electrochem. Commun. 2009, 11, 2312. (c) Sleigh-
tholme, A. E. S.; Shinkle, A. A.; Liu, Q.; Monroe, C. W.; Thompson, L.
T.; Li, Y. J. Power Sources 2011, 196, 5742. (d) Shinkle, A. A.;
Sleightholme, A. E. S.; Thompson, L. T.; Monroe, C. W. J. Appl.
Electrochem. 2011, 41, 1191. (e) Zhang, D.; Liu, Q.; Shi, X.; Li, Y. J.
Power Sources 2012, 203, 201. (f) Shinkle, A. A.; Sleightholme, A. E. S.;
Griffith, L. D.; Thompson, L. T.; Monroe, C. W. J. Power Sources 2012,
206, 490. (g) Zhang, D.; Lan, H.; Li, Y. J. Power Sources 2012, 217,
199. (h) Suttil, J. A.; Kucharyson, J. F.; Escalante-Garcia, I. L.; Cabrera,
P. J.; James, B. R.; Savinell, R. F.; Sanford, M. S.; Thompson, L. T. J.
Mater. Chem. A 2015, 3, 7929.
(11) Nonaqueous systems MCCs based on metallocene ligands:
(a) Wei, X.; Cosimbescu, L.; Xu, W.; Hu, J. Z.; Vijayakumar, M.; Feng,
J.; Hu, M. Y.; Deng, X.; Xiao, J.; Liu, J.; Sprenkle, V.; Wang, W. Adv.
Energy Mater. 2015, 5, 1400678. (b) Hwang, B.; Park, M.-S.; Kim, K.
ChemSusChem 2015, 8, 310. (c) Zhao, Y.; Ding, Y.; Song, J.; Li, G.;
Dong, G.; Goodenough, J. B.; Yu, G. Angew. Chem., Int. Ed. 2014, 53,
11036. (d) Park, K.; Cho, J. H.; Shanmuganathan, K.; Song, J.; Peng,
J.; Gobet, M.; Greenbaum, S.; Ellison, C. J.; Goodenough, J. B. J. Power
Sources 2014, 263, 52.
(15) Hoertz, P. G.; Staniszewski, A.; Marton, A.; Higgins, G. T.;
Incarvito, C. D.; Rheingold, A. L.; Meyer, G. J. J. Am. Chem. Soc. 2006,
128, 8234.
(16) Hong, Y.-R.; Gorman, C. B. J. Org. Chem. 2003, 68, 9019.
(17) (a) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic
Chemistry, 1st ed.; University Science Books: CA, 2005; p 153−202.
̀
(b) Palmer, D. S.; Llinas, A.; Morao, I.; Day, G. M.; Goodman, J. M.;
Glen, R. C.; Mitchell, J. B. O. Mol. Pharmaceutics 2008, 5, 266.
(18) With complex [Cr(L5)3]3+, the relatively large error resulted
from the high viscosity of the saturated solution.
(19) Solubility estimated based on the lower detection limit of the
Nandrop UV−vis spectrometer (2 ng/mL).
(20) In principle, differences in the chain length of the ligand (and
thus molecular size) could impact the electron transfer kinetics and
diffusion (and thus limit power densities of a battery). However, in
previous work with M(acac)3 complexes (see ref 10h), we found small
differences in the diffusion coefficient of complexes with varying ligand
chain lengths, which were all within an acceptable range for RFB
applications (see ref 2d). These results suggest that this is unlikely to
be a problem in the current systems.
(21) (a) Sato, Y.; Tanaka, N. Bull. Chem. Soc. Jpn. 1969, 42, 1021.
(b) Hughes, M. C.; Rao, J. M.; Macero, D. J. Inorg. Chim. Acta 1979,
35, L321.
(22) For a discussion of the electronic structure of [M(bpy)3]
complexes see: (a) Creutz, C. Comments Inorg. Chem. 1982, 1, 293.
(b) Konig, E.; Herzog, S. J. Inorg. Nucl. Chem. 1970, 32, 585. For IR
̈
studies on low oxidation states of [Cr(bpy)3] suggesting that the bpy
ligand is negatively charged see: (c) Saito, Y.; Takemoto, J.;
Hutchinson, B.; Nakamoto, K. Inorg. Chem. 1972, 11, 2003. For a
discussion of the electronic structure of [Cr(bpy)3]+2: (d) Cotton, F.
A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic
Chemistry, 6th ed.; Wiley & Sons: New York, 1999; p 822. For a
discussion of the formal oxidation state of the metal center in
[Cr(bpy)3]+3 and [Cr(bpy)3]+2: (e) Wilkinson, G.; Gillard, R. D.;
McCleverty, J. A. Comprehensive Coordination Chemistry, 1st ed.;
Pergamon Press: Oxford, 1987; Vol. 3, p 712. For the synthesis and
characterization of [Cr(bpy)3]+2 and [Cr(bpy)3]+1: (f) Hein, F. V.;
Herzog, S. Z. Anorg. Allg. Chem. 1952, 267, 337. For the synthesis and
characterization of [Cr(bpy)3]0: (g) Herzog, S.; Schon, W. Z. Anorg.
Allg. Chem. 1958, 297, 323. (h) Behrens, H.; Muller, A. Z. Anorg. Allg.
̈
Chem. 1965, 341, 124. (i) Quirk, J.; Wilkinson, G. Polyhedron 1982, 1,
209. For the synthesis and characterization of [Cr(bpy)3]x (x = −1,
−2, −3) see: Herzog, S.; Grimm, U.; Waicenbauer, W. Z. Chem. 1967,
7, 355.
(23) Scarborough, C. C.; Sproules, S.; Weyhermuller, T.; DeBeer, S.;
̈
Wieghardt, K. Inorg. Chem. 2011, 50, 12446.
(24) For RFB applications, it is important that these closely spaced
redox events be reversible. If one of them is not, decomposition can
occur via disproportionation.
(25) In practice, we have been able to demonstrate charge−discharge
in a symmetrical cell with n = 2e− with complex [Cr(L11)3]0. See ref
14.
(26) Barker, D. J.; Brewin, D. H.; Dahm, R. H.; Hoy, L. R. J.
Electrochim. Acta 1978, 23, 1107.
(27) (a) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry:
Part A: Structure and Mechanisms, 3rd ed.; Plenum Press: New York,
1991; pp 197−208. (b) Tucker, J. W.; Stephenson, C. R. J. J. Org.
Chem. 2012, 77, 1617.
(28) The cyclic voltammogram of [Cr(L5)3]0 shown in Figure 8 is
the third full scan. See the SI for full details on the CV analysis.
(29) Currently, the most common membranes used for nonaqueous
RFBs are anion exchange membranes, such as Neosepta AHA and
AMI-7001. However, these are not very effective at preventing cross-
over. For membrane developments in nonaqueous RFBs see: Shin, S.-
H.; Yun, S.-H.; Moon, S.-H. RSC Adv. 2013, 3, 9095.
(12) (a) Cappillino, P. J.; Pratt, H. D., III; Hudak, N. S.; Tomson, N.
C.; Anderson, T. M.; Anstey, M. R. Adv. Energy Mater. 2014, 4,
1300566. (b) Anderson, T. M.; Anstey, M.; Tomson, N. C. (Sandia
Co., US) U.S. Patent 20140239906, August 28, 2014.
(13) McDaniel, A. M.; Tseng, H.-W.; Damrauer, N. H.; Shores, M. P.
Inorg. Chem. 2010, 49, 7981.
(30) Long-term stability of the redox active species is an important
factor for the development of RFBs. We have conducted a solution
stability study for complex [Cr(L11)3]0. A saturated solution of the
complex was diluted in acetonitrile and stored for 24 h. UV−vis
(14) Cabrera, P. J.; Yang, X.; Suttil, J. A.; Hawthorne, K. L.; Brooner,
R. E. M.; Sanford, M. S.; Thompson, L. T. J. Phys. Chem. C 2015, 119,
15882.
I
Inorg. Chem. XXXX, XXX, XXX−XXX