10.1002/cplu.202000143
ChemPlusChem
COMMUNICATION
ratio between host Cage 1 and guest Cl- was also 1:1 (Figure
S11 in Supporting Information). Based on the UV-Vis titration
profiles measured at 278 nm (Figure S13 in Supporting
Information and Figure 4d) and the modified Hildebrand-
Benesi equation, the association constant (Ka) was 6800 M-1
(Figure 4e), which was 30 times higher compared to that of
discrete Cage 1 before self-assembly (223 M-1). This means
the anion-π interaction was considerably enhanced by the
formation of self-assembled superstructure.
[1]
a) T. Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S.
Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, C Tang,
S. Thompson, J. Parker, A. Trewin, J. Bacsa, A. M. Z. Slawin, A. Steiner,
A. I. Cooper, Nat. Mater. 2009, 8, 973–978; b) M. Mastalerz, M. W.
Schneider, I. M. Oppel, O. A. Presly, Angew. Chem. 2011, 123. 1078–
1083; Angew. Chem. Int. Ed. 2011, 50, 1046–1051; c) C.-X. Zhang, Q.
Wang, H. Long, W. Zhang, J. Am. Chem. Soc. 2011, 133, 20995−21001;
d) S. Lee, A. Yang, T. P. Moneypenny, II, J. S. Moore, J. Am. Chem. Soc.
2016, 138, 2182−2185; e) X. Zheng, Y. Zhang, G. Wu, J.-R. Liu, N. Cao,
L. Wang, Y. Wang, X. Li, X. Hong, C. Yang, H. Li, Chem. Commun. 2018,
54, 3138−3141; f) P. Zhang, X. Wang, W. Xuan, P. Peng, Z. Li, R. Lu, S.
Wu, Z. Tian, X. Cao, Chem. Commun. 2018, 54, 4685−4688; g) T. Hasell,
A. I. Cooper, Nat. Rev. Mater. 2016, 1, 16053–16066; h) P. S. Reiss, M.
A. Little, V. Santolini, S. Y. Chong, T. Hasell, K. E. Jelfs, M. E. Briggs, A.
I. Cooper, Chem. Eur. J. 2016, 22, 16547–16553.
This enhancement is presumably attributed to the
synergistic effect arisen from the efficient packing of Cage 1
molecules during their self-assembly. Before self-assembly
discrete Cage 1 molecules and Cl- are randomly dispersed
in the rather diluted solution, and each anion-π binding of
them is therefore independent to the formation to another
pair of Cage 1·Cl- complex (Figure 4c). On the other hand,
during the formation of nanotubes in the presence of Cl-, the
packing of Cage 1 and its complexation with the anion
simultaneously take place, and this cooperative effect
therefore might help to pinch one Cl- by two Cage 1
molecules in the superstructure (Figure 4f), leading to the
notable enhancement of their anion-π binding.
[2]
[3]
M. Brutschy, M. W. Schneider, M. Mastalerz, S. R. Waldvogel, Adv.
Mater. 2012, 24, 6049–6052.
a) B. Mondal, P. S. Mukherjee, J. Am. Chem. Soc. 2018, 140,
12592−12601; b) Y. Zhang, Y. Xiong, J. Ge, R. Lin, C. Chen, Q. Peng,
D. Wang, Y. Li, Chem. Commun. 2018, 54, 2796−2799.
[4]
a) Y. Jin, B. A. Voss, R. D. Noble, W. Zhang, Angew. Chem. 2010, 122,
6492–6495; Angew. Chem. Int. Ed. 2010, 49, 6348–6351; b) T. Mitra, K.
E. Jelfs, M. Schmidtmann, A. Ahmed, S. Y. Chong, D. J. Adams, A. I.
Cooper, Nat. Chem. 2013, 5, 276–281; c) T. Jiao, L. Chen, D. Yang, X.
Li, G. Wu, P. Zeng, A. Zhou, Q. Yin, Y. Pan, B. Wu, X. Hong, X. Kong, V.
M. Lynch, J. L. Sessler, H. Li, Angew. Chem. 2017, 129, 14737–14742;
Angew. Chem. Int. Ed. 2017, 56, 14545–14550; d) M. Liu, L. Zhang, M.
A. Little, V. Kapil, M. Ceriotti, S. Yang, L. Ding, D. L. Holden, R. Balderas-
Xicohténcatl, D. He, R. Clowes, S. Y. Chong, G. Schütz, L. Chen, M.
Hirscher, A. I. Cooper, Science 2019, 366, 613–620.
In summary, we developed a novel type of self-assembling
building block in solution, i.e., amphiphilic organic Cage 1
.
We also found that during their self-assembly into unilamellar
nanotubes, their complexation with Cl-, as a proof-of-concept
example of anion-π interactions, was notably enhanced, as
compared to the discrete cage molecules. This enhancement
might result from the synergistic effect of efficient packing of
Cage 1 molecules and their concomitant complexation with
the anions during the self-assembly process. We believe this
study opens up opportunities to use amphiphilic cages as
novel supramolecular synthons for the discovery of new
functions and materials.
[5]
[6]
[7]
a) H.-J. Kim, T. Kim, M. Lee, Acc. Chem. Res. 2011, 44, 72–82; b) J.
Wang, K. Liu, R. Xing, X. Yan, Chem. Soc. Rev. 2016, 45, 5589–5604;
c) H. M. G. Barriga, M. N. Holme, M. M. Stevens, Angew. Chem. 2019,
131, 2984–3006; Angew. Chem. Int. Ed. 2019, 58, 2958-2978. d) M. R.
Molla, S. Ghosh, Phys. Chem. Chem. Phys. 2014, 16, 26672-26683. e)
A. Sikder, S. Ghosh, Mater. Chem. Front. 2019, 3, 2602-2616.
a) V. Percec, D. A. Wilson, P. Leowanawat, C. J. Wilson, A. D. Hughes,
M. S. Kaucher, D. A. Hammer, D. H. Levine, A. J. Kim, F. S. Bates, K. P.
Davis, T. P. Lodge, M. L. Klein, R. H. DeVane, E. Aqad, B. M. Rosen, A.
O. Argintaru, M. J. Sienkowska, K. Rissanen, S. Nummelin, J. Ropponen,
Science 2010, 328, 1009–1014; b) S. E. Sherman, Q. Xiao, V. Percec,
Chem. Rev. 2017, 117, 6538–6631.
a) Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969–5985; b) A.
Walther, A. H. E. Müller, Chem. Rev. 2013, 113, 5194−5261; c) W. Jiang,
Y. Zhou, D. Yan, Chem. Soc. Rev. 2015, 44, 3874–3889; d) U. Tritschler,
S. Pearce, J. Gwyther, G. R. Whittell, I. Manners, Macromolecules 2017,
50, 3439−3463; e) M. J. Derry, L. A. Fielding, S. P. Armes, Prog. Polym.
Sci. 2016, 52, 1−18; f) Q. Xu, S. Li, C. Yu, Y. Zhou, Chem. Eur. J. 2019,
25, 4255–4264.
Acknowledgements
This work was supported by National Natural Science
Foundation of China (key program 21890733), the Shanghai
Natural Science Foundation (18ZR1420800), and the
Innovation Fund from Joint Research Centre for Precision
Medicine set up by Shanghai Jiao Tong University &
Affiliated Sixth People's Hospital South Campus
(IFPM2017A002). The authors thank Dr. Le Li for her help
with 3D Max drawing.
[8]
[9]
H.-T. Feng, X. Zheng, X. Gu, M. Chen, J. W. Y. Lam, X. Huang, B. Z.
Tang, Chem. Mater. 2018, 30, 1285−1290.
a) D. Quiñonero, C. Garau, C. Rotger, A. Frontera, P. Ballester, A. Costa,
P. M. Deyà, Angew. Chem. 2002, 114, 3539−3542; Angew. Chem. Int.
Ed. 2002, 41, 3389−3392; b) M. Mascal, Angew. Chem. 2006, 118, 2956-
2959; Angew. Chem. Int. Ed. 2006, 45, 2890−2893; c) D.-X. Wang, M.-
X. Wang, J. Am. Chem. Soc. 2013, 135, 892−897; d) B. Jiang, W. Wang,
Y. Zhang, Y. Lu, C.-W. Zhang, G.-Q. Yin, X.-L. Zhao, L. Xu, H. Tan, X.
Li, G.-X. Jin, H.-B. Yang, Angew. Chem. 2017, 129, 14630-14634;
Angew. Chem. Int. Ed. 2017, 56, 14438–14442; e) B. L. Schottel, H. T.
Chifotides, K. R. Dunbar, Chem. Soc. Rev. 2008, 37, 68–83; f) A.
Frontera, P. Gamez, M. Mascal, T. J. Mooibroek, J. Reedijk, Angew.
Chem. 2011, 123, 9736-9756; Angew. Chem. Int. Ed. 2011, 50,
9564−9583. g) H. Zeng, P. Liu, G. Feng, F. Huang, J. Am, Chem, Soc.
2019, 141, 16501-16511.
Conflict of interest
The authors declare no conflict of interest.
[10] a) O. B. Berryman, F. Hof, M. J. Hynes, D. W. Johnson, Chem. Commun.
2006, 506−508; b) B. Han, J. Lu, J. K. Kochi, Cryst. Growth Des. 2008,
8, 1327-1334; c) D.-X. Wang, S.-X. Fa, Y. Liu, B.-Y. Hou, M.-X. Wang,
Chem. Commun. 2012, 48, 11458-11460; d) H. T. Chifotides, B. L.
Schottel, K. R. Dunbar, Angew. Chem. 2010, 122, 7360-7365; Angew.
Keywords: amphiphiles, anion-π interactions, organic cages,
nanotubes, self-assembly
4
This article is protected by copyright. All rights reserved.