Inorganic Chemistry
Communication
symbolism for application to CCs. This shows that the clusters
can be represented as 1,2,3,4,6M11-1 (Figure 3). This appears
REFERENCES
(1) Kostakis, G. E.; Powell, A. K. Chem. - Eur. J. 2010, 16, 7983.
(2) Rechkemmer, Y.; Fischer, J. E.; Marx, R.; Dorfel, M.; Neugebauer,
P.; Horvath, S.; Gysler, M.; Brock-Nannestad, T.; Frey, W.; Reid, M. F.;
Van Slageren, J. J. Am. Chem. Soc. 2015, 137, 13114.
■
̈
(3) Pedersen, K. S.; Dreiser, J.; Weihe, H.; Sibille, R.; Johannesen, H.
V.; Sørensen, M. A.; Nielsen, B. E.; Sigrist, M.; Mutka, H.; Rols, S.;
Bendix, J.; Piligkos, S. Inorg. Chem. 2015, 54, 7600.
(4) Mondal, K. C.; Sundt, A.; Lan, Y.; Kostakis, G. E.; Waldmann, O.;
Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K. Angew. Chem.,
Int. Ed. 2012, 51, 7550.
(5) Rinehart, J. D.; Long, J. R. Chem. Sci. 2011, 2, 2078.
(6) Schnack, J. Condensed Matter 2015, 1−8.
́
(7) Liu, J.-L.; Lin, W.-Q.; Chen, Y.-C.; Gomez-Coca, S.; Aravena, D.;
Ruiz, E.; Leng, J.-D.; Tong, M.-L. Chem. - Eur. J. 2013, 19, 17567.
(8) Costes, J.-P.; Auchel, M.; Dahan, F.; Peyrou, V.; Shova, S.;
Wernsdorfer, W. Inorg. Chem. 2006, 45, 1924.
(9) Aronica, C.; Chastanet, G.; Pilet, G.; Le Guennic, B.; Robert, V.;
Wernsdorfer, W.; Luneau, D. Inorg. Chem. 2007, 46, 6108.
(10) Dermitzaki, D.; Raptopoulou, C. P.; Psycharis, V.; Escuer, A.;
Perlepes, S. P.; Stamatatos, T. C. Inorg. Chem. 2015, 54, 7555.
(11) Iasco, O.; Novitchi, G.; Jeanneau, E.; Luneau, D. Inorg. Chem.
2013, 52, 8723.
(12) Leng, J.-D.; Liu, J.-L.; Tong, M.-L. Chem. Commun. 2012, 48,
5286.
(13) Iasco, O.; Novitchi, G.; Jeanneau, E.; Wernsdorfer, W.; Luneau, D.
Inorg. Chem. 2011, 50, 7373.
Figure 3. Topological analysis of complex 2 (right) compared with the
previously reported Cu5Gd2 complex13 (left) (GdIII ions, turquoise; CuII
ions, dark blue) and spin orientation of the metal centers in Cu9Gd2 (2).
The associated Schiff-base ligands are shown below.
to be the first example of this topology ever reported in 3d, 4f, or
3d/4f polynuclear CC chemistry. The fact that this core motif is a
decorated version of that in the [Cu5Gd2]15 complex (3,6M7-2)
is easily verified by graphical screening. When the molecular
formula, the synthetic recipe, and the organic ligands used to
build these entities are scrutinized, it is clear that the presence of
the CH3 group in complex 1 in place of the OH group in the
Cu5Gd2 complex15 favors the addition of two Cu2 units, resulting
in the formation of the undecanuclear species as a result of the
deletion of hydrogen bonding with adjacent or solvent
molecules. Other modifications to the ligand offer further
possibilities for structural tuning.
(14) Baskar, V.; Gopal, K.; Helliwell, M.; Tuna, F.; Wernsdorfer, W.;
Winpenny, R. E. P. Dalton Trans. 2010, 39, 4747.
(15) Wu, G.; Hewitt, I. J.; Mameri, S.; Lan, Y.; Cler
Qiu, S.; Powell, A. K. Inorg. Chem. 2007, 46, 7229.
́
ac, R.; Anson, C. E.;
(16) Zhou, Q.; Yang, F.; Liu, D.; Peng, Y.; Li, G.; Shi, Z.; Feng, S.
Dalton Trans. 2013, 42, 1039.
(17) Jia, Z.-Q.; Sun, X.-J.; Hu, L.-L.; Tao, J.; Huang, R.-B.; Zheng, L.-S.
Dalton Trans. 2009, 6364.
We have successfully used a ligand modification approach to
increase the nuclearity of the high-spin Cu5Gd2 to give a Cu9Ln2
system (Ln = Gd, Dy) while maintaining the same core topology
and spin structure, as revealed from the study of Cu9Gd2. The
DyIII analogue shows SMM behavior even in the absence of an
applied field, as revealed by the ac susceptibility measurements.
(18) Zhou, H.; Chen, Y.-Y.; Yuan, A.-H.; Shen, X.-P. Inorg. Chem.
Commun. 2008, 11, 363.
(19) Kuhne, I. A.; Magnani, N.; Mereacre, V.; Wernsdorfer, W.; Anson,
̈
C. E.; Powell, A. K. Chem. Commun. 2014, 50, 1882.
(20) Kajiwara, T.; Nakano, M.; Takahashi, K.; Takaishi, S.; Yamashita,
M. Chem. - Eur. J. 2011, 17, 196.
(21) Xue, S.; Guo, Y. N.; Zhao, L.; Zhang, H.; Tang, J. Inorg. Chem.
2014, 53, 8165.
(22) Zhang, P.; Zhang, L.; Lin, S.; Tang, J. Inorg. Chem. 2013, 52, 6595.
(23) Sieklucka, B.; Podgajny, R.; Pinkowicz, D.; Nowicka, B.;
Korzeniak, T.; Bałanda, M.; Wasiutynski, T.; Pełka, R.; Makarewicz,
́
M.; Czapla, M.; Rams, M.; Gaweł, B.; Łasocha, W. CrystEngComm 2009,
11, 2032.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(24) Bencini, A.; Benelli, C.; Caneschi, A.; Carlin, R. L.; Dei, A.;
Gatteschi, D. J. Am. Chem. Soc. 1985, 107, 8128.
(25) Laborda, S.; Clerac, R.; Anson, C. E.; Powell, A. K. Inorg. Chem.
2004, 43, 5931.
Synthesis, magnetic data, and topological analysis (PDF)
Crystallographic details in CIF format (CIF)
Crystallographic details in CIF format (CIF)
(26) Merz, L.; Haase, W. J. Chem. Soc., Dalton Trans. 1980, 74, 875.
(27) Crawford, V. H.; Richardson, H. W.; Wasson, J. R.; Hodgson, J.
D.; Hatfield, W. E. Inorg. Chem. 1976, 15, 2107.
AUTHOR INFORMATION
Corresponding Author
Author Contributions
■
(28) Maity, M.; Majee, M. C.; Kundu, S.; Samanta, S. K.; Sanudo, E. C.;
̃
Ghosh, S.; Chaudhury, M. Inorg. Chem. 2015, 54, 9715.
(29) Wen, H.-R.; Bao, J.; Liu, S.-J.; Liu, C.-M.; Zhang, C.-W.; Tang, Y.-
Z. Dalton Trans. 2015, 44, 11191.
All authors have given approval to the final version of the
manuscript.
Notes
(31) Guo, Y.-N.; Xu, G.-F.; Guo, Y.; Tang, J. Dalton Trans. 2011, 40,
9953.
(32) Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Cryst. Growth
Des. 2014, 14, 3576.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(33) Kostakis, G. E.; Blatov, V. A.; Proserpio, D. M. Dalton Trans. 2012,
41, 4634.
DFG CFN and the Helmholtz Gemeinschaft POF STN provided
funding. We thank Abhishake Mondal and Valeriu Mereacre for
collecting the magnetic data. I.A.K. thanks Amy-Jane Hutchings
for her great help during this project.
C
Inorg. Chem. XXXX, XXX, XXX−XXX