Tetsuhiro Nemoto et al.
COMMUNICATIONS
argon atmosphere. After 24 h, the mixture was concentrated
under vacuum, and the obtained residue was purified by flash
column chromatography (SiO2, hexane/ethyl acetate 20/1) to
give 4c as colorless oil; yield: 0.77 g (99%, 95% ee). IR (neat):
Nagata, H. Sakamoto, Y. Ito, J. Am. Chem. Soc. 1992,
114, 2586–2592; d) R. Kuwano, K. Uchida, Y. Ito, Org.
Lett. 2003, 5, 2177–2179.
[5] For examples using a-mono-substituted ketones as the
prochiral nucleophile, see: a) B. M. Trost, G. M. Schroed-
er, J. Am. Chem. Soc. 1999, 121, 6759–6760; b) S.-L. You,
X.-L. Hou, L.-X. Dai, X.-Z. Zhu, Org. Lett. 2001, 3, 149–
151; c) B. M. Trost, G. M. Schroeder, J. Kristensen, An-
gew. Chem. 2002, 114, 3642–3645; Angew. Chem. Int.
Ed. 2002, 41, 3492–3495; d) D. C. Behenna, B. M. Stoltz,
J. Am. Chem. Soc. 2004, 126, 15044–15045; e) B. M.
Trost, M. U. Frederiksen, Angew. Chem. 2005, 117,
312–314; Angew. Chem. Int. Ed. 2005, 44, 308–310.
[6] For recent representative examples of catalytic asymmet-
ric construction of all-carbon quaternary stereocenters
using a prochiral enolate as the nucleophile, see:
a) A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc.
2005, 127, 62–63; b) M. Bella, S. Kobbelgaard, K. A. Jør-
gensen, J. Am. Chem. Soc. 2005, 127, 3670–3671; c) Y.
Hamashima, N. Sakamoto, D. Hotta, H. Somei, N. Ume-
bayashi, M. Sodeoka, Angew. Chem. 2005, 117, 1549–
1553; Angew. Chem. Int. Ed. 2005, 44, 1525–1529; d) N.
Mase, F. Tanaka, C. F. Barbas III, Angew. Chem. 2004,
116, 2474–2477; Angew. Chem. Int. Ed. 2004, 43,
2420–2423; e) M. S. Taylor, E. N. Jacobsen, J. Am.
Chem. Soc. 2003, 125, 11204–11205; f) I. D. Hills, G. C.
Fu, Angew. Chem. 2003, 115, 4051–4054; Angew.
Chem. Int. Ed. 2003, 42, 3921–3924; g) Y. Hamashima,
D. Hotta, M. Sodeoka, J. Am. Chem. Soc. 2002, 124,
11240–11241; h) D. J. Spielvogel, S. L. Buchwald, J.
Am. Chem. Soc. 2002, 124, 3500–3501; i) Y.-S. Kim, S.
Matsunaga, J. Das, A. Sekine, T. Ohshima, M. Shibasaki,
J. Am. Chem. Soc. 2000, 122, 6506–6507.
n¼2968, 2936, 2868, 1714, 1653, 1455, 1367, 1253, 1157 cmÀ1
;
1H NMR (CDCl3): d¼1.25 (t, J¼7.2 Hz, 3H), 1.46 (s, 9H),
1.43–1.55 (m, 1H), 1.66–1.75 (m, 3H), 2.02–2.05 (m, 1H),
2.41–2.51 (m, 4H), 2.69 (ddd, J¼1.2 Hz, 7.6 Hz, 14.0 Hz,
1H), 4.20 (q, J¼7.2 Hz, 2H), 5.74 (ddd, J¼1.2 Hz, 1.2 Hz,
15.2 Hz, 1H), 6.74 (ddd, J¼7.6 Hz, 15.2 Hz, 15.6 Hz, 1H); 13
C
NMR (CDCl3): d¼14.0, 22.4, 27.3, 28.0 (ꢀ3), 36.0, 37.3, 40.9,
60.5, 61.4, 80.1, 126.2, 142.1, 165.2, 171.0, 206.7; FAB-LR-MS:
m/z¼311 (MHþ), 255 (MHþ – 56); [a]D23: À81.7 (c 1.00,
CHCl3, 95% ee); FAB-HR-MS: calcd. for C17H27O5: 311.1859;
found: 311.1873.
The enantiomeric excess was determined by HPLC analysis
(DAICEL CHIRALCEL, AD-H, 2-propanol/hexane, 5/95,
flow rate 0.3 mL/min, retention time: 22.5 min [(R)-isomer]
and 23.8 min [(S)-isomer], detected at 254 nm).
Acknowledgements
This work was supported by Grant-in Aid for Encouragement
of Young Scientist (B) from the Ministry of Education, Culture,
Sport, Science, and Technology, Japan, and the Banyu Award in
Synthetic Organic Chemistry, Japan.
References and Notes
[1] For general reviews on asymmetric catalysis, see: a) I.
Ojima, Catalytic Asymmetric Synthesis, 2nd edn., Wiley,
New York, 2000; b) E. N. Jacobsen, A. Pfaltz, H. Yama-
À
[7] a) T. Nemoto, T. Matsumoto, T. Masuda, T. Hitomi, K.
Hatano, Y. Hamada, J. Am. Chem. Soc. 2004, 126,
3690–3691; b) T. Nemeto, T. Masuda, T. Matsumoto, Y.
Hamada, J. Org. Chem. 2005, 70, 7172–7178.
[8] Recent progress in transition metal catalysis using chiral
and achiral phosphine oxides is highlighted in the follow-
ing reference: N. V. Dubrovina, A. Bçrner, Angew.
Chem. 2004, 116, 6007–6010; Angew. Chem. Int. Ed.
2004, 43, 5883–5886.
[9] For examples of transition metal-mediated allylic substi-
tution of g-acetoxy-a,b-unsaturated carbonyl com-
pounds, see: a) B. M. Trost, M, Lautens, Organometallics
1983, 2, 1687–1689; b) R. Tanikaga, J. Takeuchi, M. Ta-
kyu, A, Kaji, J. Chem. Soc. Chem. Commun. 1987,
386–387; c) J. R. Green, M. K. Carroll, Tetrahedron
Lett. 1991, 32, 1141–1144; d) D. Enders, U, Frank, P.
Fey, B. Jandeleit, B. B. Lohray, J. Organomet. Chem.
1996, 519, 147–159; e) H. Kim, C. Lee, Org. Lett. 2002,
4, 4369–4371.
[10] This type of compound was utilized as the key synthetic
intermediate in the Nishidaꢁs total synthesis of (þ)-naka-
domarin A, see: a) T. Nagata, M. Nakagawa, A. Nishida,
J. Am. Chem. Soc. 2003, 125, 7484–7485; b) M. Nakaga-
wa, T. Nagata, K. Ono, A. Nishida, J. Synth. Org. Chem.,
Jpn. 2005, 63, 200–210.
moto, Comprehensive Asymmetric Catalysis, Vols. I III,
Springer, New York, 1999.
[2] For reviews on the asymmetric synthesis of quaternary
stereocenters, see: a) C. J. Douglas, L. E. Overman,
Proc. Natl. Acad. Sci. USA 2004, 101, 5363–5367; b) M,
Shibasaki, V. M. Erasmus, T. Ohshima, Adv. Synth. Catal.
2004, 346, 1533–1552; c) J. Christoffers, A. Mann, An-
gew. Chem. 2001, 113, 4725–4732; Angew. Chem. Int.
Ed. 2001, 40, 4591–4597; d) E. J. Corey, A. Guzman-Per-
ez, Angew. Chem. 1998, 110, 402–415; Angew. Chem. Int.
Ed. 1998, 37, 388–401.
[3] For examples using b-keto esters as the prochiral nucle-
ophile, see: a) B. M. Trost, R. Radinov, E. M. Grenzer, J.
Am. Chem. Soc. 1997, 119, 7879–7880; b) R. Kuwano, Y.
Ito, J. Am. Chem. Soc. 1999, 121, 3236–3267; c) J. M.
Brunel, A. Tenaglia, G. Buono, Tetrahedron: Asymmetry
2000, 11, 3585–3590; see also: d) M. Sawamura, Y, Na-
kayama, W.-M. Tang, Y. Ito, J. Org. Chem. 1996, 61,
9090–9096; e) M. Sawamura, M. Sudoh, Y. Ito, J. Am.
Chem. Soc. 1996, 118, 3309–3310.
[4] For examples using 1,3-diketones as the prochiral nucle-
ophile, see: a) T, Hayashi, K. Kanehira, H. Tsuchiya, M.
Kumada, J. Chem. Soc. Chem. Commun. 1982, 1162–
1164; b) T. Hayashi, K. Kanehira, T. Hagihara, M. Kuma-
da, J. Org. Chem. 1988, 53, 113–120; c) M. Sawamura, H.
1506
asc.wiley-vch.de
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2005, 347, 1504 – 1506