Inorganic Chemistry
Article
Oxygen Generation via Two-Photon Excited FRET. J. Am. Chem. Soc.
2004, 126, 5380−5381.
REFERENCES
■
(1) Chen, X.; Lee, K.; Ren, X.; Ryu, J.; Kim, G.; Ryu, J.; Lee, W.;
Yoon, J. Synthesis of a Highly HOCl-Selective Fluorescent Probe and
Its Use for Imaging HOCl in Cells and Organisms. Nat. Protoc. 2016,
11, 1219−1228.
(21) Ogilby, P. R. Singlet Oxygen: There is Indeed Something New
Under the Sun. Chem. Soc. Rev. 2010, 39, 3181−3209.
(22) Singh, S.; Aggarwal, A.; Bhupathiraju, N. D. K.; Arianna, G.;
Tiwari, K.; Drain, C. M. Glycosylated Porphyrins, Phthalocyanines,
and Other Porphyrinoids for Diagnostics and Therapeutics. Chem.
Rev. 2015, 115, 10261−10306.
(2) Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G.; Qu, C.;
Diao, S.; Deng, Z.; Hu, X.; Zhang, B.; Zhang, X.; Yaghi, O. K.;
Alamparambil, Z. R.; Hong, X.; Cheng, Z.; Dai, H. A Small-Molecule
Dye for NIR-II Imaging. Nat. Mater. 2016, 15, 235−242.
(3) Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.;
Verma, S.; Pogue, B. W.; Hasan, T. Imaging and Photodynamic
Therapy: Mechanisms, Monitoring, and Optimization. Chem. Rev.
2010, 110, 2795−2838.
(23) Lovell, J. F.; Liu, T. W. B.; Chen, J.; Zheng, G. Activatable
Photosensitizers for Imaging and Therapy. Chem. Rev. 2010, 110,
2839−2857.
(24) Bolze, F.; Jenni, S.; Sour, A.; Heitz, V. Molecular Photo-
sensitisers for Two-Photon Photodynamic Therapy. Chem. Commun.
2017, 53, 12857−12877.
(4) Gao, M.; Yu, F.; Lv, C.; Choo, J.; Chen, L. Fluorescent Chemical
Probes for Accurate Tumor Diagnosis and Targeting Therapy. Chem.
Soc. Rev. 2017, 46, 2237−2271.
̈
(25) Rajendran, L.; Knolker, H.; Simons, K. Subcellular Targeting
Strategies for Drug Design and Delivery. Nat. Rev. Drug Discovery
2010, 9, 29−42.
(5) Ai, X.; Mu, J.; Xing, B. Recent Advances of Light-Mediated
Theranostics. Theranostics 2016, 6, 2439−2457.
(26) Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive Oxygen Species
Generating Systems Meeting Challenges of Photodynamic Cancer
Therapy. Chem. Soc. Rev. 2016, 45, 6597−6626.
(6) Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L.
Two-Photon Absorption and the Design of Two-Photon Dyes. Angew.
Chem., Int. Ed. 2009, 48, 3244−3266.
(27) Zhu, H.; Fan, J.; Du, J.; Peng, X. Fluorescent Probes for Sensing
and Imaging within Specific Cellular Organelles. Acc. Chem. Res. 2016,
49, 2115−2126.
(7) He, G. S.; Tan, L.; Zheng, Q.; Prasad, P. N. Multiphoton
Absorbing Materials: Molecular Designs, Characterizations, and
Applications. Chem. Rev. 2008, 108, 1245−1330.
(28) Huang, H.; Yu, B.; Zhang, P.; Huang, J.; Chen, Y.; Gasser, G.;
Ji, L.; Chao, H. Highly Charged Ruthenium(II) Polypyridyl
Complexes as Lysosome-Localized Photosensitizers for Two-Photon
Photodynamic Therapy. Angew. Chem., Int. Ed. 2015, 54, 14049−
14052.
(8) Kim, H. M.; Cho, B. R. Small-Molecule Two-Photon Probes for
Bioimaging Applications. Chem. Rev. 2015, 115, 5014−5055.
(9) Sun, Z.; Zhang, L.; Wu, F.; Zhao, Y. Photosensitizers for Two-
Photon Excited Photodynamic Therapy. Adv. Funct. Mater. 2017, 27,
1704079.
(29) Kim, H. M.; An, M. J.; Hong, J. H.; Jeong, B. H.; Kwon, O.;
Hyon, J.; Hong, S.; Lee, K. J.; Cho, B. R. Two-Photon Fluorescent
Probes for Acidic Vesicles in Live Cells and Tissue. Angew. Chem., Int.
Ed. 2008, 47, 2231−2234.
(10) Pascal, S.; Denis-Quanquin, S.; Appaix, F.; Duperray, A.;
Grichine, A.; Le Guennic, B.; Jacquemin, D.; Cuny, J.; Chi, S.; Perry,
J. W.; van der Sanden, B.; Monnereau, C.; Andraud, C.; Maury, O.
Keto-Polymethines: A Versatile Class of Dyes with Outstanding
Spectroscopic Properties for in Cellulo and in Vivo Two-Photon
Microscopy Imaging. Chem. Sci. 2017, 8, 381−394.
(30) Zhu, M.; Xing, P.; Zhou, Y.; Gong, L.; Zhang, J.; Qi, D.; Bian,
Y.; Du, H.; Jiang, J. Lysosome-Targeting Ratiometric Fluorescent pH
Probes Based On Long-Wavelength BODIPY. J. Mater. Chem. B 2018,
6, 4422−4426.
(11) Horton, N. G.; Wang, K.; Kobat, D.; Clark, C. G.; Wise, F. W.;
Schaffer, C. B.; Xu, C. In Vivo Three-Photon Microscopy of
Subcortical Structures within an Intact Mouse Brain. Nat. Photonics
2013, 7, 205−209.
(31) Aits, S.; Jaattela, M. Lysosomal Cell Death at a Glance. J. Cell
̃ ̃ ̃
Sci. 2013, 126, 1905−1912.
(32) Suzuki, A. Cross-Coupling Reactions of Organoboranes: An
Easy Way to Construct C-C Bonds (Nobel Lecture). Angew. Chem.,
Int. Ed. 2011, 50, 6722−6737.
́
(12) Brousmiche, D. W.; Serin, J. M.; Frechet, J. M.; He, G. S.; Lin,
T.; Chung, S. J.; Prasad, P. N. Fluorescence Resonance Energy
Transfer in a Novel Two-Photon Absorbing System. J. Am. Chem. Soc.
2003, 125, 1448−1449.
(13) Yuan, L.; Jin, F.; Zeng, Z.; Liu, C.; Luo, S.; Wu, J. Engineering a
FRET Strategy to Achieve a Ratiometric Two-Photon Fluorescence
Response with a Large Emission Shift and Its Application to
Fluorescence Imaging. Chem. Sci. 2015, 6, 2360−2365.
(14) Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R. K. The Role of
Porphyrin Chemistry in Tumor Imaging and Photodynamic Therapy.
Chem. Soc. Rev. 2011, 40, 340−362.
(15) Josefsen, L. B.; Boyle, R. W. Unique Diagnostic and
Therapeutic Roles of Porphyrins and Phthalocyanines in Photo-
dynamic Therapy, Imaging and Theranostics. Theranostics 2012, 2,
916.
(16) Li, C.; Zhang, J.; Song, J.; Xie, Y.; Jiang, J. Synthetic Porphyrin
Chemistry in China. Sci. China: Chem. 2018, 61, 511−514.
(17) Zhu, M.; Zhou, Y.; Yang, L.; Li, L.; Qi, D.; Bai, M.; Chen, Y.;
Du, H.; Bian, Y. Synergistic Coupling of Fluorescent ″Turn-Off″ with
Spectral Overlap Modulated FRET for Ratiometric Ag+ Sensor. Inorg.
Chem. 2014, 53, 12186−12190.
(33) According to preliminary DFT modeling, the distance of the
AceDAN donor and the porphyrin acceptor have been adjusted to
(34) Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A.
Cremophor EL: The Drawbacks and Advantages of Vehicle Selection
for Drug Formulation. Eur. J. Cancer 2001, 37, 1590−1598.
(35) Here, the Pearson’s correlation coefficient (PCC) is defined as
the linear correlation between the fluorescent intensities from two
images/channels, see: Manders, E. M. M.; Verbeek, F. J.; Aten, J. A.
Measurement of Co-Localization of Objects in Dual-Colour Confocal
Images. J. Microsc. 1993, 169, 375−382.
(36) Liu, J.; Chen, Y.; Li, G.; Zhang, P.; Jin, C.; Zeng, L.; Ji, L.;
Chao, H. Ruthenium(Ii) Polypyridyl Complexes as Mitochondria-
Targeted Two-Photon Photodynamic Anticancer Agents. Biomaterials
2015, 56, 140−153.
(37) Young, R. H.; Wehrly, K.; Martin, R. L. Solvent Effects in Dye-
Sensitized Photooxidation Reactions. J. Am. Chem. Soc. 1971, 93,
5774−5779.
(38) Nosaka, Y.; Nosaka, A. Y. Generation and Detection of
Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117,
11302−11336.
(18) Zhang, D.; Zhu, M.; Zhao, L.; Zhang, J.; Wang, K.; Qi, D.;
Zhou, Y.; Bian, Y.; Jiang, J. Ratiometric Fluorescent Detection of Pb2+
by FRET-Based Phthalocyanine-Porphyrin Dyads. Inorg. Chem. 2017,
56, 14533−14539.
(39) Schmidt, R.; Afshari, E. Comment on ″Effect of Solvent on the
Phosphorescence Rate Constant of Singlet Molecular Oxygen (1Δg)″.
J. Phys. Chem. 1990, 94, 4377−4378.
(19) Lee, H.; Hong, K.; Jang, W. Design and Applications of
Molecular Probes Containing Porphyrin Derivatives. Coord. Chem.
Rev. 2018, 354, 46−73.
(40) The direct-excitation of the Por moiety may also contribute
because the absorption of Por at 370 nm cannot be neglected.
́
(20) Dichtel, W. R.; Serin, J. M.; Edder, C.; Frechet, J. M.;
Matuszewski, M.; Tan, L.; Ohulchanskyy, T. Y.; Prasad, P. N. Singlet
F
Inorg. Chem. XXXX, XXX, XXX−XXX