2844 J. Phys. Chem. B, Vol. 107, No. 12, 2003
Unno et al.
delocalization of the retinal chromophore.21 In the case of PYP,
In conclusion, this study presents the resonance Raman
investigation of PYPM in solution at room temperature. We have
examined the effects of isotopic substitutions of the chro-
mophore, and all of the observed Raman bands are assigned
with the aid of DFT calculations. With these assignments in
hand, resonance Raman spectroscopy provides an important
approach for studying the photocycle mechanism in PYP.
Further studies using time-resolved resonance Raman spectros-
copy as well as complete vibrational assignments of PYPdark
and PYPL are currently in progress.
9
the frequency of ν13 and ν14 for PYPM and PYPM,dark (1575-
1600 cm-1) is significantly higher than that for PYPdark and
PYPL (∼1555 cm-1),9,10 indicating a less delocalized electronic
structure that raises the CdC bond strength in PYPM and
PYPM,dark
.
As illustrated in Figure 4, there are two stable orientations
of the phenolic OH group of the chromophore (models 1 and
2). The computed vibrational frequencies for these conforma-
tions are similar except for the intense ν13/ν14 doublet near 1600
cm-1. The splitting of the doublet is 31 cm-1 for model 1 and
18 cm-1 for model 2 (Table 1). The resonance Raman spectrum
of PYPM shows an intermediate splitting of 23 cm-1. This
observation may indicate that the chromophore in PYPM has
two configurations such as models 1 and 2. Such a disordered
structure is consistent with recent findings that the formation
of PYPM possesses global conformational changes in the
protein.23-29
Acknowledgment. We are grateful to N. Hamada (Osaka
University) for helpful discussion and K. Yoshihara (Suntory
Institute for Bioorganic Research) for assistance in preparing
the 13C-labeled compounds. This work was supported by grants
from the Naito Foundation to M.U. and by Grant-in-Aids No.
10780399 (M.U.) and No. 10044057 (S.Y.) from the Ministry
of Education, Culture, Science, Sports, and Technology of Japan.
B. Implication for FTIR Studies. A recent FTIR study30 on
PYP suggested that the vibrational mode around 1300 cm-1 is
an indicator of the trans/cis isomerization of the chromophore.
Free trans-4-hydroxycinnamic acid exhibits an IR band at 1294
cm-1, whereas this band shifts down to 1288 cm-1 upon
photoisomerization. From the analogy to 4-hydroxycinnamic
acid, a pair of bands at 1302/1286 cm-1 in the PYPdark/PYPM
difference IR spectrum was ascribed to the trans f cis
isomerization of the chromophore. However, the present study
shows that all vibrational modes around 1300 cm-1 (ν19-ν23)
are mainly allocated to the aromatic ring motions, implying a
lack of sensitivity to the structural changes around the C7dC8
bond. Our assignment is also consistent with the available FTIR
data for isotopically labeled PYP. Imamoto et al.30 showed
that the features around 1300 cm-1 for the difference FTIR
spectra are sensitive to deuterium labeling of the aromatic
ring (C2-D/C6-D) but insensitive to that of the ethylenic bond
Supporting Information Available: The table that shows
the optimized geometries along with the experimental parameters
of PYPM in crystal. This material is available free of charge
References and Notes
(1) Meyer, T. E. Biochim. Biophys. Acta 1985, 806, 175-183.
(2) Hoff, W. D.; Dux, P.; Devreese, B.; Roodzant-Nugteren, I. M.;
Crielaard, W.; Boelens, R.; Kaptein, R.; Van Beeumen, J.; Hellingwerf, K.
J. Biochemistry 1994, 33, 13959-13962.
(3) Baca, M.; Borgstahl, G. E. O.; Boissinot, M.; Burke, P. M.;
Williams, D. R.; Slater, K. A.; Getzoff, E. D. Biochemistry 1994, 33,
14369-14377.
(4) Hoff, W. D.; van Stokkum, I. H. M.; van Ramesdonk, H. J.; van
Brederode, M. E.; Brouwer, A. M.; Fitch, J. C.; Meyer, T. E.; van Grondelle,
R.; Hellingwerf, K. J. Biophys. J. 1994, 67, 1691-1705.
(5) Imamoto, Y.; Kataoka, M.; Tokunaga, F. Biochemistry 1996, 35,
14047-14053.
(6) Ujj, L.; Devanathan, S.; Meyer, T. E.; Cusanovich, M. A.; Tollin,
G.; Atkinson, G. H. Biophys. J. 1998, 75, 406-412.
(7) Takeshita, K.; Imamoto, Y.; Kataoka, M.; Tokunaga, F.; Terajima,
M. Biochemistry 2002, 41, 3037-3048.
(8) Kim, M.; Mathies, R. A.; Hoff, W. D.; Hellingwerf, K. J.
Biochemistry 1995, 34, 12669-12672.
(9) Unno, M.; Kumauchi, M.; Sasaki, J.; Tokunaga, F.; Yamauchi, S.
J. Am. Chem. Soc. 2000, 122, 4233-4234.
(10) Unno, M.; Kumauchi, M.; Sasaki, J.; Tokunaga, F.; Yamauchi, S.
Biochemistry 2002, 41, 5668-5674.
(C8-D). Thus, the IR band at 1302 cm-1 can be assigned to the
31
phenolic ring stretching and C-H rocking mode ν20 of PYPdark
,
and the feature at 1286 cm-1 is tentatively assigned to ν22 (1290
cm-1) of PYPM.
We previously showed that the C8-C9 stretching mode ν29
acts as a marker for trans/cis isomerization of the chromophore.10
The trans configuration exhibits the ν29 band at ∼1050 cm-1
,
whereas ν29 for the cis form is 990-1000 cm-1. In the resonance
Raman spectrum, ν29 of PYPdark is observed as a doublet at 1042
and 1057 cm-1, and it appears as a singlet at 1054 cm-1 for
PYPdark in D2O.8-10 Previous FTIR studies24-26,30,32 showed a
corresponding doublet near 1050 cm-1 for PYPdark, and this
feature is found to be highly sensitive to the C8-D isotopic
substitution.30 Furthermore, the deuterated PYP sample shows
(11) Zhou, Y.; Ujj, L.; Meyer, T. E.; Cusanovich, M. A.; Atkinson, G.
H. J. Phys. Chem. A 2001, 105, 5719-5726.
(12) William, S. W., Jr.; William, D. E. J. Am. Chem. Soc. 1961, 83,
1733-1738.
(13) Imamoto, Y.; Ito, T.; Kataoka, M.; Tokunaga, F. FEBS Lett. 1995,
374, 157-160.
(14) Koch, W.; Holthausen, M. C. A Chemist’s Guide to Density
Functional Theory; Wiley-VCH: Weinheim, Germany, 2000.
(15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M.
W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A. Gaussian 98,; Gaussian, Inc.: Pittsburgh,
PA, 1998.
(16) Genick, U. K.; Borgstahl, G. E. O.; Ng, K.; Ren, Z.; Pradervand,
C.; Burke, P. M.; Srajer, V.; Teng, T.-Y.; Schildkamp, W.; McRee, D. E.;
Moffat, K.; Getzoff, E. D. Science 1997, 275, 1471-1475.
(17) Strommen, D. S. J. Chem. Educ. 1992, 69, 803-807.
(18) Takeuchi, H.; Watanabe, N.; Harada, I. Spectrochim. Acta 1988,
44A, 749-761.
a singlet band at 1056 cm-1 30
, indicating that the IR feature at
∼1050 cm-1 can be assigned to ν29 of PYPdark. The time-
resolved FTIR study26 has found a band at 1003 cm-1 for PYPM
in solutions, and similar band was observed at 994 cm-1 for
the frozen sample.25,30,32 This band is moderately sensitive to
C8-D isotopic substitution30 and assigned to ν29 of PYPM. The
retinal proteins exhibit some Raman bands around 1200
cm-1 21,22
and these modes are mixtures of C-C stretching and
,
C-H in-plane bending motions such as ν29 of PYP. Because
their pattern of frequencies and intensities is very sensitive to
the configuration and conformation, they are called “fingerprint
modes” of a retinal chromophore. Thus, the ν29 mode can be
designated as a fingerprint mode of a 4-hydroxycinnamyl
chromophore and is useful for both resonance Raman and FTIR
investigations of PYP.