G Model
CCLET 3881 1–6
6
X. Jin et al. / Chinese Chemical Letters xxx (2016) xxx–xxx
3
3
72
73
+
ꢀ
70.8. HRMS m/z calcd. for C22
found: 403.0837. MP: 193–195 C.
H
12
4
F N
2
Na [M + Na ]: 403.0834,
[17] L. Kampschulte, S. Griessl, W.M. Heckl, M. Lackinger, Mediated coadsorption at
4
4
24
25
ꢃ
the liquid-solid interface: stabilization through hydrogen bonds, J. Phys. Chem.
B 109 (2005) 14074–14078.
[
18] C. Meier, U. Ziener, K. Landfester, P. Weihrich, Weak hydrogen bonds as a
structural motif for two-dimensional assemblies of oligopyridines on highly
oriented pyrolytic graphite: an STM investigation, J. Phys. Chem. B 109 (2005)
3
74
426
4
.2. Sample preparations and STM imaging
4
4
27
28
21015–21027.
3
3
3
3
3
3
3
3
3
3
3
3
3
75
76
77
78
79
80
81
82
83
84
85
86
87
All assembly experiments were performed with a UNISOKU
[
19] J. Zhang, B. Li, X.F. Cui, et al., Spontaneous chiral resolution in supramolecular
assembly of 2,4,6-tris(2-pyridyl)-1,3,5-triazine on Au(111), J. Am. Chem. Soc.
131 (2009) 5885–5890.
429
30
scanning tunneling microscopy (STM) at
<
a base pressure
ꢀ10
4
2 ꢄ10
Torr. The Au(111) substrate was cleaned by successive
+
[20] J.L. Yang, S. Schumann, R.A. Hatton, T.S. Jones, Copper hexadecafluoro-
phthalocyanine (F16CuPc) as an electron accepting material in bilayer small
molecule organic photovoltaic cells, Org. Electron. 11 (2010) 1399–1402.
[21] X.X. Jiang, J.G. Dai, H.B. Wang, Y.H. Geng, D.H. Yan, Organic photovoltaic cells
using hexadecafluorophthalocyaninatocopper (F16CuPc) as electron acceptor
material, Chem. Phys. Lett. 446 (2007) 329–332.
cycles of 1 keV Ar ion sputtering and annealing at 770 K. The W tip
used in the experiments was prepared by electrochemical
corrosion in 2 mol/L NaOH solution and further cleaned by
electron-beam heating up to ꢅ2000 K in ultra-high vacuum
431
432
4
4
33
34
(
UHV) condition. Before their deposition, all molecules were
[
22] J.G. Dai, X.X. Jiang, H.B. Wang, D.H. Yang, Organic photovoltaic cell employing
organic heterojunction as buffer layer, Thin Solid Films 516 (2008) 3320–
3323.
435
36
degassed overnight. Afterwards, the BDFPB, BDFPBP, BDFPTP and
BDFP-3-BP molecules were separately sublimated from a tantalum
boat at 380 K, 450 K, 540 K and 450 K, and accordingly deposited
4
[23] Z.N. Bao, A.J. Lovinger, J. Brown, New air-stable n-channel organic thin film
437
transistors, J. Am. Chem. Soc. 120 (1998) 207–208.
p
onto the atomically flat Au(111)-(22 ꢄ 3) substrate. All STM
[24] A. Gerlach, F. Schreiber, S. Sellner, et al., Adsorption-induced distortion of
16CuPc on Cu(111) and Ag(111): an x-ray standing wave study, Phys. Rev. B 71
2005) 205425.
4
4
38
39
F
(
images were acquired at the temperature of liquid nitrogen.
[
25] D.G. de Oteyza, A. El-Sayed, J.M. Garcia-Lastra, et al., Copper-phthalocyanine
based metal-organic interfaces: the effect of fluorination, the substrate, and its
symmetry, J. Chem. Phys. 133 (2010) 214703.
3
3
3
88 Q2
89
440
41
Uncited references
4
[
26] Y. Wakayama, Assembly process and epitaxy of the F16CuPc monolayer on Cu
[25–28].
442
(
111), J. Phys. Chem. C 111 (2007) 2675–2678.
[
27] Y. Wakayama, D.G. de Oteyza, J.M. Garcia-Lastra, D.J. Mowbray, Solid-state
90
reactions in binary molecular assemblies of F16CuPc and pentacene, ACS Nano
443
Acknowledgments
4
44
5
(2011) 581–589.
[
28] D.G. de Oteyza, J.M. García-Lastra, M. Corso, et al., Customized electronic
coupling in self-assembled donor-acceptor nanostructures, Adv. Funct. Mater.
19 (2009) 3567–3573.
3
3
3
91 Q3
92
445
446
This work was jointly supported by NSFC (Nos. 21333001,
1133001, 21261130090), China, and NRF CREATE-SPURc project
No. R-143-001-205-592), Singapore.
2
(
93
[29] E. Barrena, D.G. de Oteyza, H. Dosch, Y. Wakayama, 2D supramolecular
4
4
47
48
self-assembly of binary organic monolayers, ChemPhysChem 8 (2007) 1915–
1918.
3
94
References
[30] D.G. de Oteyza, I. Silanes, M. Ruiz-Osés, et al., Balancing intermolecular and
molecule-substrate interactions in supramolecular assemblies, Adv. Funct.
Mater. 19 (2009) 259–264.
4
4
49
50
[
1] F. Cicoira, C. Santato, F. Rosei, Two-dimensional nanotemplates as surface cues
for the controlled assembly of organic molecules, Top. Curr. Chem. 285 (2008)
3
3
95
96
[31] E. Barrena, D.G. deOteyza, S. Sellner, et al., In situ study of the growth of
4
51
52
nanodots in organic heteroepitaxy, Phys. Rev. Lett. 97 (2006) 076102.
32] Y.L. Huang, W. Chen, H. Li, et al., Tunable two-dimensional binary molecular
2
03–267.
[
[
2] T. Kudernac, S. Lei, J.A.A.W. Elemans, S. De Feyter, Two-dimensional
supramolecular self-assembly: nanoporous networks on surfaces, Chem.
Soc. Rev. 38 (2009) 402–421.
3] H.L. Liang, Y. He, Y.C. Ye, et al., Two-dimensional molecular porous networks
constructed by surface assembling, Coord. Chem. Rev. 253 (2009) 2959–2979.
4] Y.C. He, W. Sun, Y. Wang, et al., A unified model: self-assembly of trimesic acid
on gold, J. Phys. Chem. C 111 (2007) 10138–10141.
5] J.A. Theobald, N.S. Oxtoby, M.A. Phillips, N.R. Champness, P.H. Beton,
Controlling molecular deposition and layer structure with supramolecular
surface assemblies, Nature 424 (2003) 1029–1031.
6] R. Otero, W. Xu, M. Lukas, et al., Specificity of watson-crick base pairing on a
solid surface studied at the atomic scale, Angew. Chem. Int. Ed. Engl. 47 (2008)
4
3
3
97
98
networks, Small 6 (2010) 70–75.
[33] Y.T. Shen, K. Deng, M. Li, et al., Self-assembling in fabrication of ordered
porphyrins and phthalocyanines hybrid nano-arrays on HOPG, CrystEngComm
15 (2013) 5526–5531.
4
4
53
54
[
[
[
3
99
00
[
34] T.N. Krauss, E. Barrena, H. Dosch, Y. Wakayama, Supramolecular assembly of a
2D binary network of pentacene and phthalocyanine on Cu(100),
ChemPhysChem 10 (2009) 2445–2448.
4
4
55
56
4
4
4
01
02
[35] Y.L. Huang, W. Chen, A.T.S. Wee, Molecular trapping on two-dimensional
4
57
binary supramolecular networks, J. Am. Chem. Soc. 133 (2011) 820–825.
36] D. Rohde, C.J. Yan, L.J. Wan, C–H . F hydrogen bonding: the origin of the self-
assemblies of bis(2,2'-difluoro-1,3,2-dioxaborine), Langmuir 22 (2006) 4750–
4757.
. .
[
[
[
4
4
58
59
4
4
03
04
9
673–9676.
[
37] Z.C. Mu, L.J. Shu, H. Fuchs, M. Mayor, L.F. Chi, Two dimensional chiral networks
emerging from the aryl-F . H hydrogen-bond-driven self-assembly of
partially fluorinated rigid molecular structures, J. Am. Chem. Soc. 130 (2008)
10840–10841.
7] K. Kannappan, T.L. Werblowsky, K.T. Rim, B.J. Berne, G.W. Flynn, An
experimental and theoretical study of the formation of nanostructures of
self-assembled cyanuric acid through hydrogen bond networks on graphite, J.
Phys. Chem. B 111 (2007) 6634–6642.
8] W. Xu, J.G. Wang, M.F. Jacobsen, et al., Supramolecular porous network formed
by molecular recognition between chemically modified nucleobases guanine
and cytosine, Angew. Chem. Int. Ed. Engl. 49 (2010) 9373–9377.
. .
460
405
406
407
4
4
61
62
[
38] A.C. Marele, I. Corral, P. Sanz, et al., Some pictures of alcoholic dancing: from
simple to complex hydrogen-bonded networks based on polyalcohols, J. Phys.
Chem. C 117 (2013) 4680–4690.
39] K. Sheng, Q. Sun, C. Zhang, Q.G. Tan, Steering on-surface supramolecular
nanostructures by tert-butyl group, J. Phys. Chem. C 118 (2014) 3088–3092.
[
4
4
63
64
4
4
08
09
[
[
9] P.A. Staniec, M.A. Perdigao, A. Saywell, N.P. Champness, P.H. Beton, Hierarchical
organisation on a two-dimensional supramolecular network, ChemPhysChem
4
65
4
4
10
11
[40] J. Reichert, M. Marschall, K. Seufert, et al., Competing interactions in surface
reticulation with a prochiraldicarbonitrile linker, J. Phys. Chem. C 117 (2013)
12858–12863.
[41] M. Eremtchenko, J.A. Schaefer, F.S. Tautz, Understanding and tuning the
epitaxy of large aromatic adsorbates by molecular design, Nature 425 (2003)
602–605.
[42] M.M. Knudsen, N. Kalashnyk, F. Masini, et al., Controlling chiral organization of
molecular rods on Au(111) by molecular design, J. Am. Chem. Soc. 133 (2011)
4896–4905.
8
(2007) 2177–2181.
4
4
66
67
[
10] L. Kampschulte, T.L. Werblowsky, R.S.K. Kishore, et al., Thermodynamical
equilibrium of binary supramolecular networks at the liquid-solid interface, J.
Am. Chem. Soc. 130 (2008) 8502–8507.
11] P. Vishweshwar, A. Nangia, V.M. Lynch, Recurrence of carboxylic acid-pyridine
supramolecular synthon in the crystal structures of some pyrazinecarboxylic
acids, J. Org. Chem. 67 (2002) 556–565.
12] L.J. Prins, D.N. Reinhoudt, P. Timmerman, Noncovalent synthesis using
hydrogen bonding, Angew. Chem. Int. Ed. Engl. 40 (2001) 2382–2426.
13] R.K. Castellano, Progress toward understanding the nature and function of C-H
center dot center dot center dot O interactions, Curr. Org. Chem. 8 (2004) 845–
4
4
12
13
4
4
68
69
[
4
4
14
15
4
4
70
71
[
4
16
[
43] T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, S. Mashiko, Selective
assembly on a surface of supramolecular aggregates with controlled size and
shape, Nature 413 (2001) 619–621.
[
4
4
72
73
4
4
17
18
8
65.
14] J.M. Lehn, Toward self-organization and complex matter, Science 295 (2002)
400–2403.
[44] T. Yokoyama, T. Kamikado, S. Yokoyama, S. Mashiko, Conformation selective
assembly of carboxyphenyl substituted porphyrins on Au(111), J. Chem. Phys.
[
[
4
4
74
75
4
19
2
121 (2004) 11993–11997.
15] H.L. Liang, W. Sun, X. Jin, et al., Two-dimensional molecular porous networks
formed by trimesic acid and 4,4'-bis(4-pyridyl)biphenyl on Au(111) through
hierarchical hydrogen bonds: structural systematics and control of nanopore
size and shape, Angew. Chem. Int. Ed. Engl. 5 (2011) 7562–7566.
16] G. Pawin, K.L. Wong, K.Y. Kwon, L. Bartels, A homomolecular porous network at
a Cu(111) surface, Science 313 (2006) 961–962.
420
421
422
[45] Y.L. Wang, M. Lingenfelder, S. Fabris, et al., Programming hierarchical
supramolecular nanostructures by molecular design, J. Phys. Chem. C 117
(2013) 3440–3445.
4
4
76
77
[
46] L. Grill, M. Dyer, L. Lafferentz, et al., Nano-architectures bycovalent assembly of
[
4
78
4
23
molecular building blocks, Nat. Nanotechnol. 2 (2007) 687–691.