V. De Matteis et al. / Tetrahedron Letters 45 (2004) 959–963
963
699; (d) Doodeman, R.; Rutjes, F. P. J. T.; Hiemstra, H.
Tetrahedron Lett. 2000, 41, 5979; (e) Kaptein, B.; Brox-
terman, Q. B.; Schoemaker, H. E.; Rutjes, F. P. J. T.;
Veerman, J. J. N.; Kamphuis, J.; Peggion, C.; Formaggio,
F.; Toniolo, C. Tetrahedron 2001, 57, 6567; (f) Kinder-
man, S. S.; Doodeman, R.; Van Beijma, J. W.; Russcher,
J. C.; Tjen, K. C. M. F.; Kooistra, T. M.; Mohaselzadeh,
H.; Van Maarseveen, J. H.; Hiemstra, H.; Schoemaker,
H. E.; Rutjes, F. P. J. T. Adv. Synth. Catal. 2002, 344, 736.
5. Kinderman, S. S.; van Maarseveen, J. H.; Schoemaker,
H. E.; Hiemstra, H.; Rutjes, F. P. J. T. Org. Lett. 2001, 3,
2045.
6.24–6.21 (m, 1H, FC@CH), 4.63 (s, 2H, CH2Ph), 3.74–
3.72 (m, 2H, CHCH2); 13C NMR (75 MHz, CDCl3)
d ¼ 162.7 (d, J ¼ 31.2 Hz, FCC@O), 152.7 (d,
J ¼ 275.7 Hz, CF), 136.2, 128.8, 128.1, 127.8, 112.7 (d,
J ¼ 7.4 Hz, HC@CF), 47.1, 45.5 (d, J ¼ 5.4 Hz,
CH2CH@CF); IR (neat, cmꢀ1): 3058, 2920, 2854, 1697,
1664, 1452, 1232, 1219, 988, 926, 780, 720, 689; HRMS
calcd for C11H10NOF (Mþ) 191.0764, found 191.0740. 20:
1H NMR (200 MHz, CDCl3) d ¼ 7.77 (d, J ¼ 8.5 Hz, 2H,
ArH), 7.34 (d, J ¼ 7.8 Hz, 2H, ArH), 5.89 (br s, 1H,
CH@CCF3), 5.73 (d, J ¼ 1.2 Hz, 1H, CH@CCF3), 4.62 (s,
2H, CH2O), 2.45 (s, 3H, CH3); 13C NMR (75 MHz,
CDCl3) d ¼ 145.3, 132.4, 129.9, 127.9, 123.5 (q, J ¼ 5.1 Hz,
CH2@CCF3), 122.1 (q, J ¼ 270.8 Hz, CF3), 65.6, 21.9; IR
(neat, cmꢀ1): 3118, 3068, 3041, 2962 1598, 1369, 1176,
1132, 1176, 972, 841, 777; HRMS calcd for C11H11SO3F3
6. Hekking, K. F. W.; Van Delft, F. L.; Rutjes, F. P. J. T.
Tetrahedron 2003, 59, 6751.
€
7. For review articles, see: (a) Furstner, A. Angew. Chem.,
Int. Ed. 2000, 39, 3012; (b) Trnka, T. M.; Grubbs, R. H.
Acc. Chem. Res. 2001, 34, 18; (c) Schrock, R. R.; Hoveyda,
A. H. Angew. Chem., Int. Ed. 2003, 42, 4592.
1
(Mþ) 280.0381, found 280.0375. 31: H NMR (300 MHz,
CDCl3) d ¼ 6.14–6.12 (m, 1H, CF3C@CH), 4.20 (q,
J ¼ 7.2 Hz, 4H, 2 · CH2CH3), 3.18–3.14 (m, 4H,
CF3CH2+HCCH2), 1.26 (t, J ¼ 7.3 Hz, 6H, 2 · CH2CH3);
13C NMR (75 MHz, CDCl3) d ¼ 170.6, 132.1, 130.7 (q,
J ¼ 33.6 Hz, CCF3), 121.8 (q, J ¼ 266.8 Hz, CH3), 62.2,
59.1, 40.6, 38.2, 14.3; IR (neat, cmꢀ1): 2985, 2939, 1733,
1671, 1446, 1367, 1276, 1253, 1159, 1122, 1037; HRMS
calcd for C12H15F3O4 (Mþ) 280.0923, found 280.0918. 38:
1H NMR (300 MHz, CDCl3, some signals appear as
rotamers) d ¼ 6.32 + 6.27 (br s, 1H, CF3C@CH), 4.26 (br s,
4H, CF3CCH2+HCCH2), 1.47 (s, 3H, (CH3)3); 13C NMR
(75 MHz, CDCl3, some signals appear as rotamers)
d ¼ 153.7, 130.1–129.7 (m), 129.3 (q, J ¼ 35.1 Hz, CCF3),
122.8 (q, J ¼ 263.9 Hz, CF3), 80.5 + 80.4, 53.4 + 53.2,
50.8 + 50.6, 28.6; IR (neat, cmꢀ1): 3058, 2919, 2867,
1713, 1632, 1385, 1303, 1269, 1165, 1122, 1043, 789, 694,
672; HRMS calcd for C10H14NO2F3 (Mþ) 237.0977, found
237.0978.
8. For recent examples, see: (a) Chatterjee, A. K.; Morgan, J.
P.; Scholl, M.; Grubbs, R. H. J. Am. Chem. Soc. 2000,
122, 3783; (b) Postema, M. H. D.; Calimente, D.; Liu, L.;
Behrmann, T. L. J. Org. Chem. 2000, 65, 6061; (c) Clark,
J. S.; Kettle, J. G. Tetrahedron Lett. 1997, 38, 123, 127; (d)
Sturino, C. F.; Wong, J. C. Y. Tetrahedron Lett. 1998, 39,
9623; (e) Rainier, J. D.; Cox, J. M.; Allwein, S. P.
Tetrahedron Lett. 2001, 42, 179.
9. Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida, A.
Angew. Chem., Int. Ed. 2002, 41, 4732.
10. Phosphorus-substituted olefins: (a) Hanson, P. R.; Stoia-
nova, D. S. Tetrahedron Lett. 1999, 40, 3297; (b) Timmer,
M. S. M.; Ovaa, H.; Filippov, D. V.; van der Marel, G. A.;
van Boom, J. H. Tetrahedron Lett. 2000, 41, 8635; (c)
Stoianova, D. S.; Hanson, P. R. Org. Lett. 2000, 2, 1769;
Silicon-substituted olefins: Denmark, S. E.; Yang, S.-M.
Org. Lett. 2001, 3, 1749; Boron-substituted olefins: Ashe,
A. J., III; Fang, X. Org. Lett. 2000, 2, 2089.
17. Nguyen, T.; Wakselman, C. J. Org. Chem. 1989, 54, 5640.
18. Crystallographic data have been deposited at the Cam-
bridge Crystallographic Data Centre as supplementary
publication no. CCDC 223956.
11. For cross-metathesis examples of P-, Si- and B-substituted
olefins, see: Chatterjee, A. K.; Grubbs, R. H. Angew.
Chem., Int. Ed. 2002, 41, 3172.
12. Chao, W.; Weinreb, S. M. Org. Lett. 2003, 5, 2505.
13. Salim, S. S.; Bellingham, R. K.; Satcharoen, V.; Brown, R.
C. D. Org. Lett. 2003, 5, 3403.
19. For LiAlH4 reduction of the corresponding fluoroac-
rylic acid, see: Laue, K. W.; Haufe, G. Synthesis 1998,
1453.
14. (a) Imhof, S.; Randl, S.; Blechert, S. Chem. Commun.
2001, 1692; (b) Percy, J. M.; Pintat, S. Chem. Commun.
2000, 607; (c) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.;
Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 3783.
15. Kirkland, T. A.; Grubbs, R. H. J. Org. Chem. 1997, 62,
7310.
16. All compounds were fully characterized using spectro-
scopic techniques. Data of selected compounds: 11: 1H
NMR (300 MHz, CDCl3) d ¼ 7.35–7.20 (m, 5H, ArH),
20. Furuta, S.; Saito, Y.; Fuchigami, T. J. Fluorine Chem.
1998, 87, 209.
21. Solomon, M.; Hoekstra, W.; Zima, G.; Liotta, D. J. Org.
Chem. 1988, 53, 5058.
22. (a) Hanzawa, Y.; Suzuki, M.; Kobayashi, Y. Tetrahedron
Lett. 1989, 30, 571; (b) Hanzawa, Y.; Suzuki, M.;
Kobayashi, Y.; Taguchi, T. J. Org. Chem. 1991, 56,
1718.
23. Carried out at scales ranging from 50 mg to 3 g.