Hydroxylation of 1-deoxypentalenic acid
S Takamatsu et al
71
and narigenin (unpublished data), no pentalenolactone-related com-
pounds, other than 1-deoxypentalenic acid (5), could be hydroxylated
by CYP105D7. As pentalenene (2) was not oxidized by CYP105D7, the
formation of the shunt metabolite pentalenic acid (1) in S. avermitilis
is conclusively shown to involve sequence conversion of farnesyl
diphosphate to pentalenene (2) by pentalenene synthase, PtlI-cata-
lyzed oxidation of 2 to 1-deoxypentalenic acid (5), and finally
CYP105D7-catalyzed hydroxylation of 5 to pentalenic acid (1). We
have previously demonstrated that exoconjugants of S. lividans 1326
carrying the S. avermitilis ptl cluster produced only pentalenic acid
(1).14 As S. lividans also possesses a gene encoding a member of the
CYP105D subfamily of monooxygenases, CYP105D4,20 the S. lividans
exoconjugant carrying the ptl cluster most likely generated 1-deoxy-
pentalenic acid (5), which presumably served as the substrate for
hydroxylation by CYP105D4 to pentalenic acid (1). Genes enco-
ding CYP105D subfamily monooxygenases have been found in all
genome-sequenced Streptomyces, including draft genome sequenced
microorganisms. It is, therefore, likely that other pentalenolactone-
producing Streptomyces strains might possess the similar genes
encoding members of the CYP105D subfamily of monooxygenases.
Accumulation of the shunt product pentalenic acid (1) in pentaleno-
lactone-producing microorganisms would, therefore, result from the
abortive hydroxylation of the normal 1-deoxypentalenic acid (5)
intermediate by CYP105D subfamily monooxygenase in the produ-
cing microorganism. Streptomyces exfoliates UC5319 also accumulates
pentalenolactone H as a minor component, derived by C-1 hydro-
xylation of pentalenolactone F.9 It is likely that a specific CYP105D
subfamily monooxygenase in this microorganism might be able to
catalyze the requisite oxidation of pentalenolactone F.
6
7
Nakagawa, A. et al. Antiviral activities of pentalenolactones. J. Antibiot. 38,
1114–1115 (1985).
Ikeda, M., Fukuda, A., Takagi, M., Morita, M.
& Shimada, Y. Inhibitory effect
of pentalenolactone on vascular smooth muscle cell proliferation. Eur. J. Pharm.
411, 45–53 (2001).
Seto, H., Sasaki, T., Uzawa, J., Takeuchi, S. & Yonehara, H. Studies on the biosynthesis
of pentalenolactone. Part II. Isolation of pentalenic acid and pentalenolactone H.
Tetrahedron Lett. 19, 4411–4412 (1978).
8
9
Cane, D. E. et al. The biosynthesis of pentalenene and pentalenolactone. J. Am. Chem.
Soc. 112, 4513–4524 (1990).
10 Ikeda, H. et al. Complete genome sequence and comparative analysis of the industrial
microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526–531 (2003).
11 Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic
diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362–1384 (2009).
12 Cane, D. E., He, X., Kobayashi, S., Omura, S. & Ikeda, H. Geosmin biosynthesis in
Streptomyces avermitilis. Molecular cloning, expression and mechanistic study of the
Germacradienol/Geosmin synthase. J. Antibiot. 59, 471–479 (2006).
13 Wayne, K. W. et al. Genome mining in Streptomyces avermitilis: cloning and
characterization of SAV_76, the synthase for
a new sesquiterpene. Avermitilol.
J. Am. Chem. Soc. 132, 8850–8851 (2010).
14 Tetzlaff, C. N. et al.
A gene cluster for biosynthesis of the sesquiterpenoid
antibiotic pentalenolactone in Streptomyces avermitilis. Biochemistry 45,
6179–6186 (2006).
15 Quaderer, R., Omura, S., Ikeda, H. & Cane, D. E. Pentalenolactone biosynthesis.
Molecular cloning and assignment of biochemical function to PtlI, a cytochrome P450
of Streptomyces avermitilis. J. Am. Chem. Soc. 128, 13036–13037 (2006).
16 You, Z., Omura, S., Ikeda, H. & Cane, D. E. Pentalenolactone biosynthesis. Molecular
cloning and assignment of biochemical function to PtlH, a non-heme iron dioxygenase
of Streptomyces avermitilis. J. Am. Chem. Soc. 128, 6566–6567 (2006).
17 You, Z., Omura, S., Ikeda, H., Cane, D. E. & Jogl, G. Crystal structure of the non-heme
iron dioxygenase PtlH in pentalenolactone biosynthesis. J. Biol. Chem. 282,
36552–36560 (2007).
18 You, Z., Omura, S., Ikeda, H. & Cane, D. E. Pentalenolactone biosynthesis: molecular
cloning and assignment of biochemical function to PtlF, a short-chain dehydrogenase
from Streptomyces avermitilis, and identification of a new biosynthetic intermediate.
Arch. Biochem. Biophys. 459, 233–240 (2007).
19 Jiang, J. et al. Genome mining in Streptomyces avermitilis: a biochemical Baeyer-
Villiger reaction and discovery of a new branch of the Pentalenolactone family tree.
Biochemistry 48, 6431–6440 (2009).
20 Lamb, D. C. et al. Cytochrome p450 complement (CYPome) of the avermectin-producer
Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2).
Biochem. Biophys. Res. Commun. 307, 610–619 (2003).
21 Komatsu, M., Uchiyama, T., Omura, S., Cane, D. E. & Ikeda, H. Genome-minimized
Streptomyces host for the heterologous expression of secondary metabolism. Proc.
Natl. Acad. Sci. USA 107, 2646–2651 (2010).
22 Ikeda, H., Kotaki, H. & Omura, S. Genetic studies of avermectin biosynthesis in
Streptomyces avermitilis. J. Bacteriol. 169, 5615–5621 (1987).
23 Ikeda, H., Takada, Y., Pang, C. H., Tanaka, H. & Omura, S. Transposon mutagenesis
by Tn4560 and applications with avermectin-producing Streptomyces avermitilis.
J. Bacteriol. 175, 2077–2082 (1993).
ACKNOWLEDGEMENTS
This work was supported by a Grant-in-Aid for Scientific Research on
Innovative Areas from the Ministry of Education, Culture, Sports, Science and
Technology, Japan, a Grant-in-Aid from the Japan Society for the Promotion of
Science (JSPS) 20310122 and a research grant of the Institute for Fermentation,
Osaka, Japan (HI) and by NIH Grant GM30301 (DEC).
24 Takamatsu, S. et al. Characterization of
pathway in Streptomyces avermitilis controlling epi-isozizaene and albaflavenone
biosynthesis and isolation of new oxidized epi-isozizaene metabolite. Microb.
a silent sesquiterpenoid biosynthetic
a
1
2
Koe, B. K., Sobin, B. A. & Celmer, W. D. PA 132, a new antibiotic. I. Isolation and
chemical properties. Antibiot. Annu. 672–675 (1957).
Martin, D. G., Slomp, G., Mizsak, S., Duchamp, D. J. & Chidester, C. G. The structure
and absolute configuration of pentalenolactone (PA 132). Tetrahedron Lett. 11,
4901–4904 (1970).
Biotechnol. (doi:10.1111/j.1751-7915.2010.00209.x).
25 Komatsu, M., Tsuda, M., Omura, S., Oikawa, H. & Ikeda, H. Identification and
functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc.
Natl. Acad. Sci. USA 105, 7422–7427 (2008).
26 Xu, L. H., Fushinobu, S., Ikeda, H., Wakagi, T. & Shoun, H. Crystal structures of
cytochrome P450 105P1 from Streptomyces avermitilis: conformational flexibility and
histidine ligation state. J. Bacteriol. 191, 1211–1219 (2009).
27 Omura, T. & Sato, R. The carbon monoxide-binding pigment of liver microsomes.
J. Biol. Chem. 239, 2370–2378 (1964).
28 Cane, D. E., Sohng, J. K. & Williard, P. G. Isolation and structure determination of
pentalenolactones A, B, D, and F. J. Am. Chem. Soc. 57, 844–851 (1992).
29 Lamb, D. C. et al. The cytochrome P450 complement (CYPome) of Streptomyces
coelicolor A3(2). J. Biol. Chem. 277, 24000–24005 (2002).
¨
3
4
5
Keller-Schierlein, W., Lemke, J., Nyfeler, R. & Zahner, H. Stoffwechelprodukte von
Mikroorganismen. 105. Arenaemycin E, D, und C. Arch. Mikrobiol. 84, 301–316
(1972).
Takahashi, S., Takeuchi, M., Arai, M., Seto, H. & Otake, N. Studies on the biosynthesis
of pentalenolactone. V. Isolation of deoxypentalenylglucuron. J. Antibiot. 36, 226–228
(1983).
English, A. R., McBride, T. J. & Lynch, J. E. PA 132, a new antibiotic. II. In vitro and in
vivo studies. Antibiot. Annu. 682–687 (1957).
The Journal of Antibiotics