Angewandte
Chemie
[2] J. L. R. Williams, R. C. Daly, Prog. Polym. Sci. 1977, 5, 61 – 93.
[3] G. S. Kumar, D. C. Neckers, Chem. Rev. 1989, 89, 1915 – 1925.
[4] M. Irie, Adv. Polym. Sci. 1990, 94, 27 – 67.
It is also clear that the maximum load increases with an
increase in light intensity (Figure 3). This finding results from
the increment of the concentration of cis-azobenzene moi-
eties on increasing the light intensity. Therefore, when we
need to enhance the mechanical force generated in this
photomechanical system, a laser beam with a higher intensity
would be rather simple and effective.
[5] T. Seki, Supramol. Sci. 1996, 3, 25 – 29.
[6] T. Kinoshita, J. Photochem. Photobiol. B 1998, 42, 12 – 19.
[7] a) O. Pieroni, A. Fissi, G. Popova, Prog. Polym. Sci. 1998, 23, 81 –
123; b) O. Pieroni, A. Fissi, N. Angelini, F. Lenci, Acc. Chem.
Res. 2001, 34, 9 – 17.
[8] J.-I. Anzai, T. Osa, Tetrahedron 1994, 50, 4039 – 4070.
[9] Y. Yu, T. Ikeda, Macromol. Chem. Phys. 2005, 206, 1705 – 1708.
[10] A. Athanassiou, M. Kalyva, K. Lakiotaki, S. Georgiou, C.
Fotakis, Adv. Mater. 2005, 17, 988 – 992.
[11] O. M. Tanchak, C. J. Barrett, Macromolecules 2005, 38, 10566 –
10570.
[12] a) H.-K. Kim, X.-S. Wang, Y. Fujita, A. Sudo, H. Nishida, M.
Fujii, T. Endo, Macromol. Rapid Commun. 2005, 26, 1032 – 1036;
b) H.-K. Kim, X.-S. Wang, Y. Fujita, A. Sudo, H. Nishida, M.
Fujii, T. Endo, Macromol. Chem. Phys. 2005, 206, 2106 – 2111;
c) H.-K. Kim, X.-S. Wang, Y. Fujita, A. Sudo, H. Nishida, M.
Fujii, T. Endo, Polymer 2005, 46, 5879 – 5883.
[13] H. Finkelmann, E. Nishikawa, G. G. Pereira, M. Warner, Phys.
Rev. Lett. 2001, 87, 015501.
[14] a) P. M. Hogan, A. R. Tajbakhsh, E. M. Terentjev, Phys. Rev. E
2002, 65, 041720; b) J. Cviklinski, A. R. Tajbakhsh, E. M.
Terentjev, Eur. Phys. J. E 2002, 9, 427 – 434; c) M. Warner, E.
Terentjev, Macromol. Symp. 2003, 200, 81 – 92.
In conclusion, ferroelectric LCE films containing azoben-
zenes with a high LC order and a low glass transition
temperature were prepared by photopolymerization under an
electric field. Irradiation with 366-nm light caused the films to
bend at room temperature toward the actinic light source
along the alignment direction of mesogens, and the bent films
recovered their initial flat state completely after exposure to
visible light. The bending took place within 500 ms upon
irradiation by a laser beam. In addition, the mechanical force
generated by photoirradiation reached about 220 kPa, similar
to the contraction force of human muscles (around 300 kPa).
This fast and strong mechanical response to light may lead to
potential applications of the ferroelectric LCEs in artificial
muscles, micro-optomechanical systems, and other photo-
driven mechanical devices.
[15] M.-H. Li, P. Keller, B. Li, X. Wang, M. Brunet, Adv. Mater. 2003,
15, 569 – 572.
Experimental Section
[16] a) T. Ikeda, M. Nakano, Y. Yu, O. Tsutsumi, A. Kanazawa, Adv.
Mater. 2003, 15, 201 – 205; b) Y. Yu, M. Nakano, T. Ikeda, Pure
Appl. Chem. 2004, 76, 1435 – 1445; c) Y. Yu, M. Nakano, A.
Shishido, T. Shiono, T. Ikeda, Chem. Mater. 2004, 16, 1637 – 1643;
d) Y. Yu, M. Nakano, T. Ikeda, Nature 2003, 425, 145; e) M.
Kondo, Y. Yu, T. Ikeda, Angew. Chem. 2006, 118, 1406 – 1410;
Angew. Chem. Int. Ed. 2006, 45, 1378 – 1382.
[17] M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M.
Shelley, Nat. Mater. 2004, 3, 307 – 310.
[18] K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, C. W. M.
Bastiaansen, J. Lub, D. J. Broer, J. Mater. Chem. 2005, 15, 5043 –
5048.
[19] N. Tabiryan, S. Serak, X. M. Dai, Opt. Express 2005, 13, 7442 –
7448.
[20] M. Brehmer, R. Zentel, Macromol. Chem. Phys. 1994, 195,
1891 – 1904.
[21] a) K. Semmler, H. Finkelmann, Macromol. Chem. Phys. 1995,
196, 3197 – 3205; b) K. Hiraoka, H. Finkelmann, Macromol.
Rapid Commun. 2001, 22, 456 – 460; c) K. Hiraoka, W. Sagano, T.
Nose, H. Finkelmann, Macromolecules 2005, 38, 7352 – 7357.
[22] a) D. J. Broer, H. Finkelmann, K. Kondo, Makromol. Chem.
1988, 189, 185 – 194; b) D. J. Broer, G. N. Mol, G. Challa,
Makromol. Chem. 1989, 190, 19 – 30; c) R. A. M. Hikmet, J.
Mater. Chem. 1999, 9, 1921 – 1932.
The preparation of 1 and 2 is shown in the Supporting Information.
The ferroelectric LCE films were prepared by photopolymerization
of a monomer mixture of 1 and 2 (80:20) containing 1 mol% of a
photoinitiator (Irgacure 784) in the SmC* phase. First, the molten
mixture was injected into an ITO glass cell at 1178C (in an isotropic
phase), which was coated with rubbing-treated polyimide alignment
layers. Then, after the sample was cooled slowly (2 KminÀ1) to a
polymerization temperature of 908C (in the SmC* phase), an electric
field of 1 VmmÀ1 (applied voltage/cell thickness) was applied and
photoirradiation was performed for 2 h at > 540 nm (3 mWcmÀ2 at
547 nm) with a 500-W high-pressure mercury lamp through glass
filters (Toshiba, Y-52, and IRA-25S). After polymerization, the ITO
cells were opened and the LCE films were removed with a cutter. The
detailed measurement methods and the properties of 1 and 2, the
monomer mixture, and the ferroelectric LCE films are described in
the Supporting Information.
Received: July 28, 2006
Revised: October 31, 2006
Published online: December 20, 2006
Keywords: chromophores · elastomers · liquid crystals ·
.
mechanical properties · thin films
[23] T. Ikeda, T. Sasaki, K. Ichimura, Nature 1993, 361, 428 – 430.
[1] G. Smet, J. Polym. Sci. A Polym. Chem. 1975, 13, 2223 – 2231.
Angew. Chem. Int. Ed. 2007, 46, 881 –883
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
883