X.-S. Shi et al. / Journal of Molecular Structure 754 (2005) 71–76
75
Table 3
Selected bond lengths [A] and angles [8] for 2
M
˚
N
N
N
N
N
N
M
M
M
Cd(1)–N(1)
2.365(6)
2.385(5)
2.329(5)
70.1(2)
86.6(2)
87.7(2)
157.4(2)
108.0(2)
70.8(2)
101.8(2)
82.4(2)
Cd(1)–N(6)
2.412(5)
2.291(6)
2.301(6)
100.2(2)
163.8(2)
99.9(2)
cis
trans
Cd(1)–N(2)
Cd(1)–N(7)
Cd(1)–N(4)
Cd(1)–N(9A)
Scheme 2.
N(1)–Cd(1)–N(2)
N(1)–Cd(1)–N(6)
N(2)–Cd(1)–N(6)
N(4)–Cd(1)–N(1)
N(4)–Cd(1)–N(2)
N(4)–Cd(1)–N(6)
N(7)–Cd(1)–N(1)
N(7)–Cd(1)–N(2)
N(7)–Cd(1)–N(4)
N(7)–Cd(1)–N(6)
N(7)–Cd(1)–N(9B)
N(9B)–Cd(1)–N(1)
N(9B)–Cd(1)–N(2)
N(9B)–Cd(1)–N(4)
N(9B)–Cd(1)–N(6)
(EE or 1,3) and end-on (EO or 1,1). For the end-to-end
coordination, there are also trans or cis coordination
configurations (see Scheme 2) [16]. In 1, the SCNK adopts
terminal mode to coordinate to the CdII center, while NK3 in 2
acts as a bridge in an end-to-end (m-1,3) coordination mode,
and for each NK3 it is a trans coordination configuration.
In summary, two Cd(II) complexes with 3-(2-pyridyl)
pyrazole-based ligand, which have mononuclear and 1D
chain structures, have been synthesized. The structural
difference of the two complexes is attributed to the different
anions, which have different coordination methods.
92.3(2)
162.3(2)
89.0(2)
93.4(2)
Symmetry codes: A x, KyC3/2, zC1/2; B x, KyC3/2, zK1/2.
geometry around the Cd(II) center in 2 could also be
described as a distorted octahedron. All the Cd–N bond
˚
lengths [region from 2.291(6) to 2.412(5) A] are in the
normal range for analogous complexes [10], and the bond
angles around each Cd(II) center range from 70.1(2) to
157.38(19)8. In addition, the dihedral angles between the
pyridyl-pyrazole ring and benzene ring is 9.28 in the unit
around each Cd(II) center, and the centroid-centroid
˚
separation between them is 3.684 A, indicating the presence
of intramolecular p–p stacking interaction [13].
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (No. 20373028).
It is interesting that in 2 the azido anion acts as a bridge to
link the Cd(II) ions in an end-to-end (m-1,3) coordination
mode to form a 1D chain (Fig. 2(b)), and the two
coordinated azido is in cis positions, but for bridging
azido it is a trans coordination mode. It is worthy to point
out that the bridging mode of azide adopting cis-M-(m-N3)-
M to coordinate to Cd(II) center is rare, although similar
bridging mode has been observed in the structures of other
metal azido complexes (i.e. [Ni(1,2-diamino-2-methyl-
propan)2(m-N3)]n(PF6)n [14], [Ni(aep)2(m-N3)]n(ClO4)n
[15]). Furthermore, the adjacent {[Cd(L)2N3]C}n chains
are linked through intermolecular C–H/O weak hydrogen-
bonding interactions into a 3D framework (Fig. 2c and d)
References
[1] For some recent reviews: S. Kitagawa, R. Kitaura, S. Noro, Angew.
Chem. Int. Ed. 43 (2004) 2334; M. Ruben, J. Rojo, F.J. Romero-
Salguero, L.H. Uppadine, J.M. Lehn, Angew. Chem. Int. Ed. 43
(2004) 3644.
[2] For examples R.G. Xiong, X.Z. You, B.F. Abrahams, Z. Xue,
C.M. Che, Angew. Chem. Int. Ed. 40 (2001) 4422; M. Pascu, F. Tuna,
E. Kolodziejczyk, G.I. Pascu, G. Clarkson, M.J. Hannon, Dalton
Trans. (2004) 1546; M.L. Tong, Y.M. Wu, J. Ru, X.M. Chen,
´
H.C. Chang, S. Kitagawa, Inorg. Chem. 41 (2002) 4846; R. Garcıa-
¨
Zarracino, H. Hopfl, J. Am. Chem. Soc. 127 (2005) 3121; D. Guo,
K.L. Pang, C.Y. Duan, C. He, Q.J. Meng, Inorg. Chem. 41 (2002)
5978.
˚
˚
[C(9A)/O(3B)Z3.3593 A, H(9AA)/O(3B)Z2.540 A,
C(9A)-H(9AA)/O(3B)Z147.18; C(8B)/O(3B)Z
[3] C. Kaes, A. Katz, M.W. Hosseini, Chem. Rev. 100 (2000) 3553;
B.H. Ye, M.L. Tong, X.M. Chen, Coord. Chem. Rev. 249 (2005)
545.
˚
˚
3.2331 A, H(8AB)/O(3B)Z2.332 A, C(8B)-H(8AB)/
O(3B)Z163.18].
Both SCNK and NK3 anions have mono-terminal and
bridging coordination modes, respectively (see Scheme 1)
[12,16]. But in more examples, the former prefers to mono-
terminal coordination, while the latter prefers to bridging
[16,17]. Furthermore, when the NK3 anion acts as bridging
ligand, there are two typical coordination modes: end-to-end
[4] J.S. Fleming, K.L.V. Mann, C.A. Carraz, E. Psillakis, J.C. Jeffery,
J.A. McCleverty, M.D. Ward, Angew. Chem. Int. Ed. 37 (1998) 1279;
Z.R. Bell, J.C. Jeffery, J.A. McCleverty, M.D. Ward, Angew. Chem.
Int. Ed. 41 (2002) 2515; D.A. McMorran, P.J. Steel, Chem. Commun.
(2002) 2120; M.H.W. Lam, D.Y.K. Lee, S.S.M. Chiu, K.W. Man,
W.T. Wong, Eur. J. Inorg. Chem. (2000) 1483.
[5] M.J. Hinner, M. Grosche, E. Herdtweck, W.R. Thiel, Z. Anorg. Allg.
Chem. 629 (2003) 2251; H. Zhang, C.S. Liu, X.H. Bu, M. Yang,
J. Inorg. Biochem. 99 (5) (2005) 1119.
[6] J.S. Fleming, K.L.V. Mann, S.M. Couchman, J.C. JeVery,
J.A. McCleverty, M.D. Ward, J. Chem. Soc., Dalton Trans. (1998)
2047.
M
M
M
M
M
M
SCN
SCN
SCN
M
M
[7] Bruker AXS, SAINT Software Reference Manual, Madison, WI,
1998.
M
M
NNN
NNN
[8] G.M. Sheldrick, SHELXTL NT Version 5.1. Program for Solution and
¨
Refinement of Crystal Structures, University of Gottingen, Germany,
Scheme 1.
1997.