KLIMOCHKIN et al.
1530
2. Gunawardana, C.A., Sinha, A.S., Reinheimer, E.W., and
Aakeröy, C.B., Chemistry, 2020, vol. 2, p. 179.
17. Skomorokhov, M.Yu. and Klimochkin, Yu.N., Russ. J.
Org. Chem., 2001, vol. 37, p. 1050.
3. Sayed, S.M., Lin, B.-P., and Yang, H., Soft Matter, 2016,
vol. 12, p. 6148.
18. Aoyama, M. and Hara, S., Tetrahedron, 2009, vol. 65,
p. 3682.
https://doi.org/10.1039/C6SM01019A
4. Klapötke, T.M., Krumm, B., and Widera, A.,
ChemPlusChem., 2018, vol. 83, p. 61.
19. Ghorai, S.K., Jin, M., Hatakeyama, T., and Naka-
mura, M., Org. Lett., 2012, vol. 14, p. 1066.
5. Slyusarchuk, V.D., Kruger, P.E., and Hawes, C.S.,
ChemPlusChem, 2020, vol. 85, p. 845.
20. Tominaga, M., Ohara, K., Yamaguchi, K., and
Azumaya, I., J. Org. Chem., 2014, vol. 79, p. 6738.
6. Degtyarenko, A.S., Handke, M., Krämer, K.W.,
Liu, S.-X., Decurtins, S., Rusanov, E.B., Thomp-
son, L.K., Krautscheid, H., and Domasevitch, K.V.,
Dalton Trans., 2014, vol. 43, p. 8530.
7. Tsai, C.W., Wu, K.H., Yang, C.C., and Wang, G.P.,
React. Funct. Polym., 2015, vols. 91–92, p. 11.
21. Pannier, N. and Maison, W., Eur. J. Org. Chem., 2008,
vol. 2008, p. 1278.
22. Gulia, N. and Daugulis, O., Angew. Chem., Int. Ed.,
2017, vol. 56, p. 3630.
23. Lund, T. and Lund, H., Tetrahedron Lett., 1986, vol. 27,
p. 95.
8. Zhu, X., Shao, B., Vanden Bout, D.A., and
Plunkett, K.N., Macromolecules, 2016, vol. 49, p. 3838.
9. Liu, Z., Yang, S., Jin, X., Zhang, G., Guo, B., Chen, H.,
Yu, P., Sun, Y., Zhang, Z., and Wang, Y., Med. Chem.
Commun., 2017, vol. 8, p. 135.
24. Kevill, D.N., D’Souza, M.J., and Lomas, J.S., J. Chem.
Soc., Perkin Trans. 2, 1997, no. 2, p. 131.
https://doi.org/10.1039/A607628I
25. Miller, J.B. and Salvador, J.R., J. Org. Chem., 2002,
vol. 67, p. 435.
10. Sosonyuk, S.E., Peshich, A., Tutushkina, A.V.,
Khlevin, D.A., Lozinskaya, N.A., Gracheva, Y.A.,
Glazunova, V.A., Osolodkin, D.I., Semenova, M.N.,
Semenov, V.V., Palyulin, V.A., Proskurnina, M.V.,
Shtila, A.A., and Zefirov, N.S., Org. Biomol. Chem.,
2019, vol. 17, p. 2792.
26. Rossi, R.A., Pierini, A.B., and Borosky, G.L., J. Chem.
Soc., Perkin Trans. 2, 1994, no. 12, p. 2577.
27. Santiago, A.N., Toledo, C.A., and Rossi, R.A., J. Phys.
Org. Chem., 2003, vol. 16, p. 413.
28. Grob, C.A., Angew. Chem., Int. Ed. Engl., 1976, vol. 15,
p. 569.
11. Mezeiova, E., Korabecny, J., Sepsova, V., Hrabinova, M.,
Jost, P., Muckova, L., Kucera, T., Dolezal, R., Misik, J.,
Spilovska, K., Pham, N.L., Pokrievkova, L., Roh, J.,
Jun, D., Soukup, O., Kaping, D., and Kuca, K.,
Molecules, 2017, vol. 22, p. 1265.
29. Lukach, A.E., Santiago, A.N., and Rossi, R.A., J. Phys.
Org. Chem., 1994, vol. 7, p. 610.
30. Koch, V.R. and Miller, L.L., J. Am. Chem. Soc., 1973,
vol. 95, p. 8631.
12. Bose, S.K., Fucke, K., Liu, L., Steel, P.G., and
Marder, T.B., Angew. Chem., Int. Ed., 2014, vol. 53,
p. 1799.
31. Koch, V.R. and Miller, L.L. Tetrahedron Lett., 1973,
vol. 14, p. 693.
32. Abeywickrema, R.S., Della, E.W., and Fletcher, S.,
Electrochim. Acta, 1982, vol. 27, p. 343.
13. Bose, S.K., Brand, S., Omoregie, H.O., Haehnel, M.,
Maier, J., Bringmann, G., and Marder, T.B., ACS Catal.,
2016, vol. 6, p. 8332.
14. Ioannou, S. and Nicolaides, A.V., Tetrahedron Lett.,
2009, vol. 50, p. 6938.
15. Skomorokhov, M.Yu. and Klimochkin, Yu.N., Russ. J.
Org. Chem., 2011, vol. 47, p. 1811.
33. Klein, L.J. and Peters, D.G., Second Supplements to the
2nd Edition of Roddʼs Chemistry of Carbon Compounds,
Sainsbury, M., Ed., New York: Elsevier, 1991,
vol. 5, p. 1.
16. Denmark, S.E. and Henke, B.R., J. Am. Chem. Soc.,
1991, vol. 113, p. 2177.
34. Bach, R.D., Taaffee, T.H., and Holubka, J.W., J. Org.
Chem., 1980, vol. 45, p. 3439.
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 56 No. 9 2020