Organic Letters
Letter
2
007, 9, 1081−1084. (b) Fandrick, D. R.; Johnson, C. S.; Fandrick, K.
Induced Zwitterionic Intermediates. Angew. Chem, Int. Ed. 2014, 126,
13314−13317.
R.; Reeves, J. T.; Tan, Z.; Lee, H.; Song, J.J.; Yee, N. K.; Senanayake, C.
H. Highly Diastereoselective Zinc-Catalyzed Propargylation of tert-
Butanesulfinyl Imines. Org. Lett. 2010, 12, 748−751. (c) Guo, T.; Song,
R.; Yuan, B.; Chen, X.; Sun, X.; Lin, G. Highly Efficient Asymmetric
Construction of Quaternary Carbon-containing Homoallylic and
Homopropargylic Amines. Chem. Commun. 2013, 49, 5402−5404.
(11) For selected examples of ylides reported by others, see:
(a) Terada, M.; Toda, Y. Relay Catalysis Using a Rhodium
Complex/Chiral Brønsted Acid Binary System: Enantioselective
Reduction of a Carbonyl Ylide as the Reactive Intermediate. Angew.
Chem., Int. Ed. 2012, 51, 2093−2097. (b) Zhou, C.; Wang, J.; Wei, J.;
Xu, Z.; Guo, Z.; Low, K.; Che, C. M. Synergistic Rhodium(II)
Carboxylate and Brønsted Acid Catalyzed Multicomponent Reactions
of Enalcarbenoids: Direct Synthesis of α-Pyrrolylbenzylamines. Angew.
Chem., Int. Ed. 2012, 51, 11376−11380. (c) Ren, L.; Lian, X.; Gong, L.
Chem. - Eur. J. 2013, 19, 3315−3318. (d) Alamsetti, S. K.; Spanka, M.;
Schneider, C. Synergistic Rhodium/Phosphoric Acid Catalysis for the
Enantioselective Addition of Oxonium Ylides to ortho-Quinone
Methides. Angew. Chem., Int. Ed. 2016, 55, 2392−2396. (e) Meng,
X.; Yang, B.; Zhang, L.; Pan, G.; Zhang, X.; Shao, Z. Rh(II)/Brønsted
Acid Catalyzed General and Highly Diastereo- and Enantioselective
Propargylation of in Situ Generated Oxonium Ylides and C-Alkynyl N-
Boc N,O-Acetals: Synthesis of Polyfunctional Propargylamines. Org.
Lett. 2019, 21, 1292−1296. (f) Zhu, S.; Cai, Y.; Mao, H.; Xie, J.; Zhou,
Q. Enantioselective Iron-catalysed O−H bond Insertions. Nat. Chem.
(d) Yuan, B.; Zhang, Z.; Liu, W.; Sun, X. A Highly Practical Approach to
Chiral Homoallylic−homopropargylic Amines via Aza-Barbier Reac-
tion. Tetrahedron Lett. 2016, 57, 2147−2151.
(
5) (a) Wisniewska, H. M.; Jarvo, E. R. Enantioselective Silver-
catalyzed Propargylation of Imines. Chem. Sci. 2011, 2, 807−810.
(b) Vieira, E. M.; Haeffner, F.; Snapper, M. L.; Hoveyda, A. H. A
Robust, Efficient, and Highly Enantioselective Method for Synthesis of
Homopropargyl Amines. Angew. Chem., Int. Ed. 2012, 51, 6618−6621.
(c) Wisniewska, H. M.; Jarvo, E. R. Enantioselective Propargylation and
Allenylation Reactions of Ketones and Imines. J. Org. Chem. 2013, 78,
1629−11636. (d) Osborne, C. A.; Endean, T. B. D.; Jarvo, E. R. Silver-
1
Catalyzed Enantioselective Propargylation Reactions of N-Sulfonylke-
timines. Org. Lett. 2015, 17, 5340−5343. (e) Fandrick, D. R.; Hart, C.
A.; Okafor, I. S.; Mercadante, M. A.; Sanyal, S.; Masters, J. T.;
Sarvestani, M.; Fandrick, K. R.; Stockdill, J. L.; Grinberg, N.; Gonnella,
N.; Lee, H.; Senanayake, C. H. Copper-Catalyzed Asymmetric
Propargylation of Cyclic Aldimines. Org. Lett. 2016, 18, 6192−6195.
2
(
010, 2, 546−551.
12) For reviews and books, see: (a) Davies, H. M. L.; Morton, D.
Guiding Principles for Site Selective and Stereoselective Intermolecular
C−H Functionalization by Donor/Acceptor Rhodium Carbenes.
Chem. Soc. Rev. 2011, 40, 1857−1869. (b) Cheng, Q.; Doyle, M. P.
The Selection of Catalysts for Metal Carbene Transformations. Adv.
Organomet. Chem. 2016, 66, 1−31. (c) Thumar, N. J.; Wei, Q.; Hu, W.
Recent Advances in Asymmetric Metal-Catalyzed Carbene Transfer
from Diazo Compounds toward Molecular Complexity. Adv. Organo-
met. Chem. 2016, 66, 33−91.
(
6) Bai, X.; Wang, Z.; Li, B. Iridium-Catalyzed Enantioselective
Hydroalkynylation of Enamides for the Synthesis of Homopropargyl
Amides. Angew. Chem., Int. Ed. 2016, 55, 9007−9011.
(
7) (a) Yu, J.; Shi, F.; Gong, L. Brønsted-Acid-Catalyzed Asymmetric
Multicomponent Reactions for the Facile Synthesis of Highly
Enantioenriched Structurally Diverse Nitrogenous Heterocycles. Acc.
Chem. Res. 2011, 44, 1156−1171. (b) de Graaff, C.; Ruijter, E.; Orru, R.
V. A. Recent Developments in Asymmetric Multicomponent Reactions.
Chem. Soc. Rev. 2012, 41, 3969−4009.
(13) For selected examples, see: (a) Xu, X.; Qian, Y.; Yang, L.; Hu, W.
Cooperative CatalysHis in highly Enantioselective Mannich-type
Three-component Reaction of a Diazoacetophenone with an Alcohol
and an Imine. Chem. Commun. 2011, 47, 797−799. (b) Jiang, J.; Ma, X.;
Liu, S.; Qian, Y.; Lv, F.; Qiu, L.; Wu, X.; Hu, W. Enantioselective
Trapping of Phosphoramidate Ammonium Ylides with Imino Esters for
Synthesis of 2,3-Diaminosuccinic acid Derivatives. Chem. Commun.
2013, 49, 4238−4240. (c) Jing, C.; Xing, D.; Hu, W. Catalytic
Asymmetric Four-Component Reaction for the Rapid Construction of
3,3-Disubstituted 3-Indol-3′-yloxindoles. Org. Lett. 2015, 17, 4336−
4339. (d) Wu, K.; Zhou, C. Q.; Che, C. M. Perfluoroalkyl Aziridines
with Ruthenium Porphyrin Carbene Intermediates. Org. Lett. 2019, 21,
85−89.
(14) For three reported examples about alkynyldiazoacetates, see:
(a) Davies, H. M. L.; Boebel, T. A. Asymmetric Synthesis of 1-
Alkynylcyclopropane-1-Carboxylates. Tetrahedron Lett. 2000, 41,
8189−8192. (b) Courant, T.; Kumar, R.; Turcaud, S.; Micouin, L.
Rhodium (II)-Alkynyl Carbenoids Insertion into Si−H bonds: An
Entry to Propargylic Geminal Bis(silanes). Org. Lett. 2016, 18, 4818−
(
8) For reviews, see: (a) Guo, X.; Hu, W. Novel Mmulticomponent
Reactions via Trapping of Protic Onium Ylides with Electrophiles. Acc.
Chem. Res. 2013, 46, 2427−2440. (b) Zhang, D.; Hu, W. Asymmetric
Multicomponent Reactions Based on Trapping of Active Intermediates.
Chem. Rec. 2017, 17, 739−753.
(
9) For selected examples of ylides reported by our group, see: (a) Hu,
W.; Xu, X.; Zhou, J.; Liu, W.; Huang, H.; Hu, J.; Yang, L.; Gong, L.
Cooperative Catalysis with Chiral Brønsted Acid-Rh (OAc) : Highly
Enantioselective Three-Component Reactions of Diazo Compounds
2
4
with Alcohols and Imines. J. Am. Chem. Soc. 2008, 130, 7782−7783.
(b) Jiang, J.; Xu, H.; Xi, J.; Ren, B.; Lv, F.; Guo, X.; Jiang, L.; Zhang, Z.;
Hu, W. Diastereoselectively Switchable Enantioselective Trapping of
Carbamate Ammonium Ylides with Imines. J. Am. Chem. Soc. 2011,
1
33, 8428−8431. (c) Zhang, D.; Zhou, J.; Xia, F.; Kang, Z.; Hu, W.
Bond Cleavage, Fragment Modification and Reassembly in Enantio-
selective Three-Component Reactions. Nat. Commun. 2015, 6, 5801−
4
820. (c) Zhao, T.; Piccardi, R.; Micouin, L. Rapid and Effective
Synthesis of α-Acyloxy-α-alkynyltrimethylsilanes. Org. Lett. 2018, 20,
015−5018.
15) Hari, D. P.; Waser, J. Copper-Catalyzed Oxy-Alkynylation of
Diazo Compounds with Hypervalent Iodine Reagents. J. Am. Chem. Soc.
016, 138, 2190−2193.
16) Zhu, L.; Brassard, C. J.; Zhang, X.; Guha, P. M.; Clark, R. J. On
5810. (d) Xiao, G.; Ma, C.; Xing, D.; Hu, W. Enantioselective Synthesis
of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-
Cocatalyzed Three-Component Reaction of Diazo Compounds,
Thiols, and Imines. Org. Lett. 2016, 18, 6086−6089. (e) Yu, S.; Fu,
X.; Liu, G.; Qiu, H.; Hu, W. Efficient and Facile Synthesis of Chiral
Sulfonamides via Asymmetric Multicomponent Reactions. Huaxue
Xuebao 2018, 76, 895−900. (f) Kang, Z.; Wang, Y.; Zhang, D.; Wu, R.;
Xu, X.; Hu, W. Asymmetric Counter-Anion-Directed Aminomethyla-
tion: Synthesis of Chiral β-Amino Acids via Trapping of an Enol
Intermediate. J. Am. Chem. Soc. 2019, 141, 1473−1478.
5
(
2
(
the Mechanism of Copper(I)- Catalyzed Azide−Alkyne Cycloaddition.
Chem. Rec. 2016, 16, 1501−1517.
(
17) Simon, L.; Goodman, J. M. A Model for the Enantioselectivity of
́
Imine Reactions Catalyzed by BINOL-Phosphoric Acid Catalysts. J.
(
10) For recent examples AMCRs with zwitterionic intermediates,
Org. Chem. 2011, 76, 1775−1788.
see: (a) Qiu, H.; Li, M.; Jiang, L.; Lv, F.; Zan, L.; Zhai, C.; Doyle, M. P.;
Hu, W. Highly Enantioselective Trapping of Zwitterionic Intermediates
by Imines. Nat. Chem. 2012, 4, 733−738. (b) Zhang, D.; Qiu, H.; Jiang,
L.; Lv, F.; Ma, C.; Hu, H. Enantioselective Palladium(II) Phosphate
Catalyzed Three-Component Reactions of Pyrrole, Diazoesters, and
Imines. Angew. Chem., Int. Ed. 2013, 52, 13356−13360. (c) Jia, S.; Xing,
D.; Zhang, D.; Hu, W. Catalytic Asymmetric Functionalization of
Aromatic C-H Bonds by Electrophilic Trapping of Metal-Carbene-
E
Org. Lett. XXXX, XXX, XXX−XXX