Communication
ChemComm
to Peter Cannon (Avara Pharmaceutical Services Ltd., Shannon,
Ireland) for acting as the Enterprise Mentor. PF acknowledges
support from Royal Society Newton Alumni programme. We thank
Sylvester Byrne and Benjamin A. Chalmers for laboratory assistance,
and John O’Reilly for consultation on HPLC (all National University
of Ireland Galway). Andrew Benniston (Newcastle University, UK) is
gratefully acknowledged for discussions around the photophysical
and computational studies.
Conflicts of interest
There are no conflicts to declare.
Fig. 2 TD-DFT analysis of ground and excited state orbital delocalization
in epoxide-quinone 4, p-dimethoxybenzene-coupled quinone 2, and
Bis-TEMPO-Vis. Conditions: PCM/M06-2X/6-311++G (d,p), using DCE as
solvent and the natural transition orbital (NTO)17 method for visualization.
Notes and references
1 (a) H. A. Beejapur, Q. Zhang, K. Hu, L. Zhu, J. Wang and Z. Ye, ACS
Catal., 2019, 9, 2777; (b) M. M. Haugland, J. E. Lovett and
E. A. Anderson, Chem. Soc. Rev., 2018, 47, 668; (c) J. Wahsner, E. M.
Bis-TEMPO-Vis, its ET was more than 30 kJ molꢀ1 lower than
the other alkoxyamines. The lmax of 2 was red-shifted by 96 nm
compared to Bis-TEMPO-Vis, suggesting the presence of a low-
lying charge-transfer (CT) state (Fig. S4, ESI†). Cyclic voltam-
metry on 2 and its constituent alkoxyamines 1 and TEMPO-Vis,
supported the localization of the HOMO and LUMO to the
dimethoxybenzimidazole and the benzimidazolequinone motifs
respectively (Fig. S6, ESI†). Time-dependent density functional
theory (TD-DFT)18 provided graphical representation of spatially-
separated ground and excited state orbitals (Fig. 2). The ground
state (S0) of 2 is primarily localized on the dimethoxybenzimid-
azole, while the density of the first excited state (S1) is entirely
localized on the quinone, with limited overlap between the two
states. In comparison, the CT effect is not observed in the
analogous TD-DFT of Bis-TEMPO-Vis.
In conclusion, alkoxyamines of heterocyclic quinones are
introduced with room temperature visible-light homolysis providing
an alternative to nature’s bioreductive activation of prodrugs, as a
means of unmasking the transient quinone methide. This includes
an alkoxyamine that can release up to two equivalents of nitroxide
per molecule using visible-light activation, and that does so sequen-
tially with kd1 E kd2. Facile synthetic deactivation of one chromo-
phore limited TEMPO release to o1 equiv. For blue LED, the rates
of bond homolysis can largely be rationalized by thermodynamics,
Gale, A. Rodrıguez-Rodrıguez and P. Caravan, Chem. Rev., 2019,
119, 957; (d) A. Kaur, J. L. Kolanowski and E. J. New, Angew. Chem.,
Int. Ed., 2016, 55, 1602; (e) J. E. Nutting, M. Rafiee and S. S. Stahl,
Chem. Rev., 2018, 118, 4834; ( f ) K.-A. Hansen and J. P. Blinco, Polym.
Chem., 2018, 9, 1479; (g) E. G. Bagryanskaya and S. R. A. Marque,
Chem. Rev., 2014, 114, 5011.
´
´
2 T. Fukuda, T. Terauchi, A. Goto, K. Ohno, Y. Tsujii, T. Miyamoto,
S. Kobatake and B. Yamada, Macromolecules, 1996, 29, 6393.
3 J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes and
B. Charleux, Prog. Polym. Sci., 2013, 38, 63.
4 (a) D.-L. Versace, Y. Guillaneuf, D. Bertin, J. P. Fouassier, J. Lalevee
and D. Gigmes, Org. Biomol. Chem., 2011, 9, 2892; (b) Y. Guillaneuf,
D. Bertin, D. Gigmes, D.-L. Versace, J. Lalevee and J.-P. Fouassier,
Macromolecules, 2010, 43, 2204; (c) S. Hu, J. H. Malpert, X. Yang and
D. C. Neckers, Polymer, 2000, 41, 445.
5 (a) A. Goto, J. C. Scaiano and L. Maretti, Photochem. Photobiol. Sci.,
2007, 6, 833; (b) M. Baron, J. C. Morris, S. Telitel, J.-L. Clement,
´
´
´
´
J. Lalevee, F. Morlet-Savary, A. Spangenberg, J.-P. Malval, O. Soppera,
D. Gigmes and Y. Guillaneuf, J. Am. Chem. Soc., 2018, 140, 3339;
(c) M. Herder and J.-M. Lehn, J. Am. Chem. Soc., 2018, 140, 7647.
6 P. D. Bass, D. A. Gubler, T. C. Judd and R. M. Williams, Chem. Rev.,
2013, 113, 6816.
7 (a) W. G. Schulz, R. A. Nieman and E. B. Skibo, Proc. Natl. Acad. Sci.
U. S. A., 1995, 92, 11854; (b) C. Flader, J. Liu and R. F. Borch, J. Med.
Chem., 2000, 43, 3157.
8 E. B. Skibo, J. Org. Chem., 1992, 57, 5874.
9 (a) I. Q. Li, B. A. Howell, R. A. Koster and D. B. Priddy, Macro-
molecules, 1996, 29, 8554; (b) G. Ananchenko and K. Matyjaszewski,
Macromolecules, 2002, 35, 8323; (c) J. Ruehl, N. L. Hill, E. D. Walter,
G. Millhauser and R. Braslau, Macromolecules, 2008, 41, 1972.
10 J. L. Hodgson, L. B. Roskop, M. S. Gordon, C. Y. Lin and M. L. Coote,
J. Phys. Chem. A, 2010, 114, 10458.
while for green LED variations in absorbance become more 11 L. O’Donovan, M. P. Carty and F. Aldabbagh, Chem. Commun., 2008,
5592.
important. The placement of an electron-rich substituent on the
electron-deficient quinone gives a charge-transfer state that
12 B. E. Love, J. Bonner-Stewart and L. A. Forrest, Synlett, 2009, 813.
13 A. Gellis, H. Kovacic, N. Boufatah and P. Vanelle, Eur. J. Med. Chem.,
stabilizes the quinone under visible-light. The benzimidazole-
quinone alkoxyamines offer the possibility of wide-ranging
applications from visible-light activated anti-tumour cytotoxins
2008, 43, 1858.
14 B. R. Langlois, in Modern Synthesis Processes and Reactivity of Fluorinated
Compounds, ed. H. Groult, F. R. Leroux and A. Tressaud, Elsevier, 2017,
ch. 5, pp. 125.
to radical initiators for vinyl monomer photopolymerizations 15 D. W. Grattan, D. J. Carlsson, J. A. Howard and D. M. Wiles, Can.
J. Chem., 1979, 57, 2834.
16 G. Moad and E. Rizzardo, Macromolecules, 1995, 28, 8722.
17 R. L. Martin, J. Chem. Phys., 2003, 118, 4775.
giving polymers end-functionalized with antibiotics.
We thank the Irish Research Council for awarding PK an
Enterprise Partnership Postgraduate Scholarship. We are grateful 18 A. D. Laurent and D. Jacquemin, Int. J. Quantum Chem., 2013, 113, 2019.
14668 | Chem. Commun., 2019, 55, 14665--14668
This journal is ©The Royal Society of Chemistry 2019