The Journal of Organic Chemistry
Note
solvent followed by silica gel column chromatography (eluent: CHCl3)
afforded the title compound as a solid (0.65 g, 0.93 mmol) in 93%
yield: mp 88−90 °C; FT-IR (ATR, cm−1) 3293, 2936, 2910, 2857,
J. K.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418−3438.
(c) Avram, L.; Cohen, Y.; Rebek, J., Jr. Chem. Commun. 2011, 5368−
5375.
1
2164, 1724, 1590, 1440, 1320, 1235, 1223, 1112, 771; H NMR (400
(2) (a) Cram, D. J. Angew. Chem., Int. Ed. 1986, 25, 1039−1057.
MHz, CDCl3, 25 °C) δ 8.05 (t, J = 1.2 Hz, 3H), 8.02 (t, J = 1.2 Hz,
3H), 7.68 (t, J = 1.2 Hz, 3H), 3.92 (s, 9H), 3.12 (s, 3H), 2.26 (br s,
1H), 2.13 (s, 6H), 1.92 (d, J = 2.8 Hz, 6H); 13C NMR (100 MHz,
CDCl3, 25 °C) δ 165.7, 138.9, 132.9, 132.2, 130.6, 124.4, 122.8, 97.1,
81.9, 79.1, 78.5, 52.4, 46.2, 40.4, 30.7, 28.0; HRMS (ESI, m/z) calcd
for C46H34O6Na (M + Na+) 705.2248, found 705.2224.
(b) Jasat, A.; Sherman, J. C. Chem. Rev. 1999, 99, 931−967. (c) Badjic,
́
J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. Acc.
Chem. Res. 2005, 38, 723−732.
(3) (a) Saiki, T.; Goto, K.; Okazaki, R. Angew. Chem., Int. Ed. 1997,
36, 2223−2224. (b) Warmuth, R. Eur. J. Org. Chem. 2001, 3, 423−437.
(c) Dong, V. M.; Fiedler, D.; Carl, B.; Bergman, R. G.; Raymond, K.
N. J. Am. Chem. Soc. 2006, 128, 14464−14465.
Adamantane-Based Cage (1). A mixture of 3 (137 mg, 0.20
mol), copper(I) chloride (198 mg, 2.00 mmol), and N,N,N′,N′-
(tetramethylethylene)diamine (TMEDA) (233 mg, 2.00 mmol) in
CH2Cl2 (80 mL, 2.5 mM) was stirred for 12 h at room temperature.
The reaction mixture was washed with water and brine, and dried over
Na2SO4. Evaporation of the solvent followed by silica gel column
chromatography (eluent: CHCl3) and gel permeation chromatography
(eluent: CHCl3) afforded the title compound (16.3 mg, 0.012 mmol)
as a solid in 12% yield: mp >300 °C dec; FT-IR (ATR, cm−1) 2968,
2870, 2160, 1740, 1506, 1490, 1318, 1260, 1112, 1001, 793; 1H NMR
(400 MHz, CDCl3, 25 °C) δ 8.05 (t, J = 1.6 Hz, 6H), 8.03 (t, J = 1.6
Hz, 6H), 7.79 (t, J = 1.6 Hz, 6H), 3.93 (s, 18H), 2.30 (br s, 2H), 2.23
(d, J = 12.8 Hz, 6H), 2.14 (d, J = 12.4 Hz, 6H), 1.94 (s, 12H); 13C
NMR (100 MHz, CDCl3, 25 °C) δ 165.5, 140.6, 132.6, 131.8, 130.9,
124.6, 122.3, 97.4, 80.3, 79.0, 74.8, 52.5, 46.8, 39.7, 30.8, 27.9; HRMS
(ESI, m/z) calcd for C92H63O12 (M + H+) 1359.4314, found
1359.4316. Crystallographic data for 1: C67H61.26O6, Mr = 962.42,
triclinic, P-1, a = 13.782(3) Å, b = 19.442(4) Å, c = 21.953(4) Å, α =
88.24(3)°, β = 76.49(3)°, γ = 86.79(3)°, V = 5710(2) Å3, Z = 4, Dc =
1.120 Mg m−3, 2θmax = 52.98°, T = 300 K, 12911 reflections measured
and 8045 unique (Rint = 0.0544). μ = 0.070 mm−1, Tmax = 0.9958, and
Tmin = 0.9916. The final R1 and wR2(F2) was 0.0914 and 0.2486 (I >
2σ(I)), 0.1404 and 0.2955 (all data). CCDC 973447.
(4) (a) Conn, M. M.; Rebek, J., Jr. Chem. Rev. 1997, 97, 1647−1668.
(b) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc.
Chem. Res. 2005, 38, 349−358.
(5) (a) MacGillivray, L. R.; Atwood, J. L. Angew. Chem., Int. Ed. 1999,
38, 1018−1033. (b) Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J., Jr.
Angew. Chem., Int. Ed. 2002, 41, 1488−1508. (c) Biros, S. M.; Rebek,
J., Jr. Chem. Soc. Rev. 2007, 36, 93−104.
(6) (a) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32,
975−982. (b) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000,
100, 853−908. (c) Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.;
Kusukawa, T.; Biradha, K. Chem. Commun. 2001, 509−518.
(7) (a) Diederich, F. Angew. Chem., Int. Ed. 1988, 27, 362−386.
(b) See, S.; Vogtle, F. Angew. Chem., Int. Ed. 1992, 31, 528−549.
̈
(c) Bunz, U. H. F.; Rubin, Y.; Tobe, Y. Chem. Soc. Rev. 1999, 28, 107−
119.
(8) (a) Holst, J. R.; Trewin, A.; Cooper, A. I. Nat. Chem. 2010, 2,
915−920. (b) Jin, Y.; Voss, B. A.; Noble, R. D.; Zhang, W. Angew.
Chem., Int. Ed. 2010, 49, 6348−6351.
(9) (a) Sawamura, M.; Kawai, K.; Matsuo, Y.; Kanie, K.; Kato, T.;
Nakamura, E. Nature 2002, 419, 702−705. (b) Nakanishi, T. Chem.
Commun. 2010, 3425−3436.
(10) (a) Ebbing, M. H. K.; Villa, M.-J.; Valpuesta, J.-M.; Prados, P.;
Mendoza, J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4962−4966.
(b) Yan, L.; Xue, Y.; Gao, G.; Lan, J.; Yang, F.; Su, X.; You, J. Chem.−
Eur. J. 2010, 16, 2250−2257. (c) Li, D.; Zhou, W.; Landskron, K.;
Sato, S.; Kiely, C. J.; Fujita, M.; Liu, T. Angew. Chem., Int. Ed. 2011, 50,
5182−5187.
(11) Kunitake, T. Angew. Chem., Int. Ed. 1992, 31, 709−726.
(12) (a) Einaga, Y.; Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K.
J. Am. Chem. Soc. 1999, 121, 3745−3750. (b) Cheng, Q.; Peng, T.;
Stevens, R. C. J. Am. Chem. Soc. 1999, 121, 6767−6768.
(13) (a) Cassell, A. M.; Asplund, C. C.; Tour, J. M. Angew. Chem., Int.
ASSOCIATED CONTENT
■
S
* Supporting Information
1H and 13C NMR spectra for compounds 1−3, X-ray
crystallographic file (CIF), DLS data, and SEM and TEM
images for 1. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Authors
■
Ed. 1999, 38, 2403−2405. (b) Brettreich, M.; Burghardt, S.; Bottcher,
̈
C.; Bayerl, T.; Bayerl, S.; Hirsch, A. Angew. Chem., Int. Ed. 2000, 39,
1845−1848.
(14) (a) Zhou, Y.; Yan, D. Angew. Chem., Int. Ed. 2004, 43, 4896−
4899. (b) Yang, M.; Wang, W.; Yuan, F.; Zhang, X.; Li, J.; Liang, F.;
He, B.; Minch, B.; Wegner, G. J. Am. Chem. Soc. 2005, 127, 15107−
15111.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(15) (a) Shklyarevskiy, I. O.; Jonkheijm, P.; Christianen, P. C. M.;
Schenning, A. P. H. J.; Meijer, E. W.; Henze, O.; Kilbinger, A. F. M.;
Feast, W. J.; Guerzo, A. D.; Desvergne, J.-P.; Maan, J. C. J. Am. Chem.
Soc. 2005, 127, 1112−1113. (b) Hoeben, F. J. M.; Shklyarevskiy, I. O.;
Pouderoijen, M. J.; Engelkamp, H.; Schenning, A. P. H. J.; Christianen,
P. C. M.; Maan, J. C.; Meijer, E. W. Angew. Chem., Int. Ed. 2006, 45,
1232−1236.
(16) (a) Ravoo, B. J.; Darcy, R. Angew. Chem., Int. Ed. 2000, 39,
4324−4326. (b) Lee, M.; Lee, S.-J.; Jiang, L.-H. J. Am. Chem. Soc.
2004, 126, 12724−12725. (c) Seo, S. H.; Chang, J. Y.; Tew, G. N.
Angew. Chem., Int. Ed. 2006, 45, 7526−7530.
(17) Xu, X.-N.; Wang, L.; Li, Z.-T. Chem. Commun. 2009, 6634−
6636.
(18) (a) Tominaga, M.; Masu, H.; Azumaya, I. J. Org. Chem. 2009,
74, 8754−8760. (b) Tominaga, M.; Katagiri, K.; Azumaya, I.
CrystEngComm 2010, 12, 1164−1170.
(19) (a) Radhakrishnan, U.; Schweiger, M.; Stang, P. J. Org. Lett.
2001, 3, 3141−3143. (b) Maison, W.; Frangioni, J. V.; Pannier, N. Org.
Lett. 2004, 6, 4567−4569.
This work was supported by a Grant-in-Aid for Young
Scientists (B) from the Ministry of Education, Science, Sports,
and Culture of Japan (No. 22750113). We wish to thank Prof.
Dr. T. Tokumura and Dr. T. Kurita (Tokushima Bunri
University) for their technical guidance in the DLS experiment
and Dr. T. Itoh (Center for Analytical Instrumentation, Chiba
University) for the TEM measurement. We also thank Drs. S.
Baba and K. Miura (the Japan Synchrotron Radiation Research
Institute (JASRI)) for their valuable help with data collection
for the X-ray analysis of 1. The synchrotron radiation
experiment was performed at the BL38B1 beamline at
SPring-8 with the approval of JASRI (Proposal No.
2010B1179).
REFERENCES
■
(1) (a) Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Angew.
Chem., Int. Ed. 2007, 46, 2366−2393. (b) Yoshizawa, M.; Klosterman,
D
dx.doi.org/10.1021/jo500989c | J. Org. Chem. XXXX, XXX, XXX−XXX