M. Saeed et al. / Tetrahedron Letters 44 (2003) 315–317
317
9. (a) Tamami, B.; Kiasat, A. R. J. Chem. Res. (S) 1998,
454; (b) Fanghanel, B.; Ullrich, A.; Wagner, C. Eur. J.
Org. Chem. 1998, 1577.
10. (a) Saeed, M.; Abdel-Jalil, R. J.; Voelter, W.; El-Abade-
lah, M. M. Chem. Lett. 2001, 7, 660; (b) Abdel-Jalil, R.
J.; Saeed, M.; Voelter, W. Tetrahedron Lett. 2001, 42,
2435.
11. Al-Abed, Y.; Naz, N.; Mootoo, D.; Voeter, W. Tetra-
hedron Lett. 1996, 37, 8641.
12. Buchanan, D.; Clode, D. M.; Vethaviyasar, N. J. J.
Chem. Soc., Perkin Trans. 1 1976, 1449.
13. Sundin, A.; Frejd, T.; Magnusson, G. J. Org. Chem.
1986, 51, 3927.
14. General method for the preparation of trithiocarbonates:
To a stirred solution of freshly prepared Na2CS3 (ꢀ2
mmol) in water (5 ml) was added a solution of epoxytrifl-
ate (1 mmol) in ethanol (1 ml) at room temperature. The
red color of Na2CS3 disappeared with the formation of
yellow colored precipitate. After the time indicated in the
Table 1, the precipitate was washed with water and
recrystallized with ethylacetate.
Figure 1. Preferred conformations of the pyranoside rings in
12 and 13 as determined from coupling interactions in 1H
NMR spectroscopy.
In conclusion, an easy and efficient method for the
synthesis of cyclic trithiocarbonates on a carbohydrate
scaffold has been discovered, which may lead to further
chemical modifications to prepare dithio- and/or
dideoxysugars.
15. Data for 12: yellow crystals; mp 131–133°C; 1H NMR
(250 MHz, CDCl3): l 7.36–7.38 (m, 5H, Ph), 4.95 (d,
J=11.9 Hz, 1H, OCHHPh), 4.76 (ddd, J=4.27, 3.05 Hz,
1H, H-4), 4.62 (d, J=11.9 Hz, 1H, OCHHPh), 4.46 (d,
J=6.41 Hz, 1H, H-1), 4.30 (dd, J=3.05, 13.42 Hz, 1H,
H-5), 4.07 (m, 2H, H-3, H-2), 3.87 (dd, J=3.35, 13.42
Hz, 1H, H-5%); 13C NMR (63 MHz, CDCl3): l 58.7, 61.4
(C-3, C-4), 61.6 (C-5), 69.9 (C-2), 70.8 (CH2Ph), 102
(C-1), 128.1, 128.3, 128.7 (Ph), 162.1 (CꢀS); FAB-MS:
m/z=314.1 (M+).
References
1. (a) Raymond, A. L. Advances in Carbohydrate Chemistry;
Academic Press: New York, 1995; p. 129; (b) McCasland,
D. E.; Zanglungo, A. B.; Durham, L. J. J. Org. Chem.
1974, 39, 1462.
1
Data for 13: yellow crystals; mp 162.3°C; H NMR (250
MHz, CDCl3): l 7.34–7.42 (m, 5H, Ph), 5.07 (brs, 1H,
H-1), 4.81 (m, 2H, H-4, OCHHPh), 4.61 (d, J=11.6 Hz,
1H, OCHHPh), 4.17 (m, 3H, H-5, H-3, H-2), 3.88 (dd,
J=1.83, 13.42 Hz, 1H, H-5%); 13C NMR (63 MHz,
CDCl3): l 56.8 (C-5), 60.1, 60.4 (C-3, C-4), 68.3 (C-2),
70.4 (CH2Ph), 97.05 (C-1), 128.3, 128.5, 128.8 (Ph); FAB-
MS: m/z=314.1 (M+).
2. Iqbal, S. M.; Owen, L. N. J. Chem. Soc. 1960, 1030.
3. McSweeney, G. E.; Wiggins, L. F. Nature 1951, 168, 874.
4. McCasland, G. E.; Zanglungo, A. B.; Durham, L. J. J.
Org. Chem. 1976, 41, 1125.
5. Craighton, A. M.; Owen, L. N. J. Chem. Soc. 1960, 1024.
6. (a) Duus, F. In Comprehensive Organic Chemistry; Bar-
ton, D.; Ollis, W. D., Eds.; Pergamon: New York, 1979;
Vol. 3, p. 342; (b) Bogemann, M.; Peterson, S.; Schultz,
O. E.; Soll, H. In Methoden der organischen Chemie;
Muller, E., Ed.; Houben-Weyl: Berlin, 1995; Vol. 9, p.
804.
1
Data for 15: yellow oil; H NMR (250 MHz, CDCl3): l
5.23 (s, 1H, H-1), 4.29 (t, J=7.3 Hz, 1H, H-4), 3.66 (m,
2H), 3.52 (2H), 3.35 (s, 3H, OCH3); 13C NMR (63 MHz,
CDCl3): l 28.3 (C-6), 55.6 (OCH3), 56.8 (C-3), 74.1, 75.7
(C-2, C-4), 104.3 (C-1); FAB-MS: m/z=238.1 (M+)
16. Anderson, C. D.; Goodman, L.; Baker, B. R. J. Am.
Chem. Soc. 1958, 80, 5247.
7. Reid, E. E. Organic Chemistry of Bivalent Sulfur; Chemi-
cal Publishing Company: New York, 1958.
8. Martin, D. J.; Greco, C. C. J. Org. Chem. 1968, 33, 1577.