10.1002/anie.201907206
Angewandte Chemie International Edition
RESEARCH ARTICLE
(c) J. E. Hall, J. V. Matlock, J. W. Ward, J. Clayden, Angew. Chem. Int.
Ed., 2016, 55, 11153; (d) Z.-L. Li, X.-H. Li, N. Wang, N.-Y. Yang, X.-Y.
Liu, Angew. Chem. Int. Ed., 2016, 55, 15100; (e) L. G. Baud, M. A.
Manning, H. L. Arkless, T. C. Stephens, W. P. Unsworth, Chem. Eur. J.,
2017, 23, 2225; (f) T. C. Stephens, M. Lodi, A. Steer, Y. Lin, M. Gill, W.
P. Unsworth, Chem. Eur. J., 2017, 23, 13314; (g) R. Mendoza‐Sanchez,
V. B. Corless, Q. N. N. Nguyen, M. Bergeron‐Brlek, J. Frost, S. Adachi,
D. J. Tantillo, A. K. Yudin, Chem. Eur. J., 2017, 23, 13319; (h) R. Costil,
Q. Lefebvre, J. Clayden, Angew. Chem. Int. Ed., 2017, 56, 14602; (i) D.
R. Loya, A. Jean, M. Cormier, C. Fressigné, S. Nejrotti, J. Blanchet, J.
Maddaluno, M. De Paolis, Chem. Eur. J., 2018, 24, 2080; (j) T. C.
Stephens, A. Lawer, T. French, W. P. Unsworth, Chem. Eur. J. 2018, 24,
13947; (k) Y. Zhou, Y.-L. Wei, J. Rodriguez, Y. Coquerel, Angew. Chem.
Int. Ed., 2019, 58, 456; (l) E. Reutskaya, A. Osipyan, A. Sapegin, A. S.
Novikov, M. Krasavin, J. Org. Chem. 2019, 84, 1693.
[16] For excellent reviews in which these chirality elements are discussed,
see: (a) E. M. G. Jamieson, F. Modicom, S. M. Goldup, Chem. Soc. Rev.,
2018, 47, 5266; (b) A. Link, C. Sparr, Chem. Soc. Rev. 2018, 47, 3804;
(c) R. M. Witzig, D. Lotter, V. C. Fäseke, C. Sparr, Chem. Eur. J. 2017,
23, 12960; (d) D. C. Harrowven, S. L. Kostiuk, Nat. Prod. Rep. 2012, 29,
223.
[17] For prominent examples of the stereoselective synthesis of axial, planar
and helical chiral compounds, see: (a) M. R. Crittall, H. S. Rzepa, D. R.
Carbery, Org. Lett., 2011, 13, 1250; (b) N. Di Iorio, P. Righi, A. Mazzanti,
M. Mancinelli, A. Ciogli, G. Bencivenni, J. Am. Chem. Soc. 2014, 136,
10250; (c) A. Link, C. Sparr, Angew. Chem. Int. Ed. 2014, 53, 5458; (d)
V. C. Fäseke, C. Sparr, Angew. Chem. Int. Ed. 2016, 55, 7261; (e) B.
Zilate, A. Castrogiovanni, C. Sparr, ACS Catal. 2018, 8, 2981; A. Link, C.
Sparr, Angew. Chem. Int. Ed. 2018, 57, 7136; (f) D. Lotter, A.
Castrogiovanni, M. Neuburger, C. Sparr, ACS Cent. Sci. 2018, 4, 656;
(g) C. G. Newton, E. Braconi, J. Kuziola, M. D. Wodrich, N. Cramer,
Angew. Chem. Int. Ed. 2018, 57, 11040; (h) Y. Wang, W. Ju, H. Tian, S.
Sun, X. Li, W. Tian, J. Gui, J. Am. Chem. Soc. 2019, 141, 5021.
[18] For atroposelective syntheses of medium-sized rings and macrocycles,
see: (a) H. Tabata, H. Suzuki, K. Akiba, H. Takahashi, H. Natsugari, J.
Org. Chem. 2010, 75, 5984; (b) E. Van Den Berge, J. Pospíšil, T. Trieu-
Van, L. Collard, R. Robiette, Eur. J. Org. Chem. 2011, 6649; (c) I. Mutule,
B. Joo, T. Medne, T. Kalnins, E. Vedejs, E. Suna, J. Org. Chem. 2015,
80, 3058;
[7]
[8]
[9]
For reviews of ring expansion chemistry, see: (a) M. Hesse in Ring
Enlargement in Organic Chemistry, Wiley-VCH, Weinheim, 1991; (b) W.
P. Unsworth, J. R. Donald, Chem. Eur. J., 2017, 23, 8780. For a review
of consecutive ring expansion reactions, see: (c) T. C. Stephens, W. P.
Unsworth, Synlett 2019, DOI: 10.1055/s-0037-1611500
For rare examples of conceptually related ring expansion cascade
processes, see: (a) H. Wu, W. Zi, G. Li, H. Lu, F. D. Toste, Angew. Chem.
Int. Ed., 2015, 54, 8529; (b) B. Zhou, L. Li, X.-Q. Zhu, J.-Z. Yan, Y.-L.
Guo, L.-W. Ye, Angew. Chem. Int. Ed., 2017, 56, 4015. For ring
expansion cascades, see reference 7c.
[19] See reference 18b and: P. S. Baran, N. Z. Burns, J. Am. Chem. Soc.
2006, 128, 3908.
For important studies on acyl transfer processes that operate via
transient covalent catalysis and bear analogy with the new reactions
described in this manuscript, see: (a) D. S. Kemp, Biopolymers 1981, 20,
1793; (b) D. S. Kemp, D. J. Kerkman, S.-L. Leung, G. Hanson, J. Org.
Chem. 1981, 46, 490; (c) S. B. H. Kent, Chem. Soc. Rev. 2009, 38, 338;
(d) J. P. Tam, C. T. T. Wong, J. Biol. Chem. 2012, 287, 27020.
[20] For the rotation of 1,3-disubstittued pyridines, see: I. R. Lahoz, A.
Navarro-Vázquez, A. L. Llamas-Saiz, J. L. Alonso-Gómez, M. M. Cid,
Chem. Eur. J. 2012, 18, 13836.
[21] We attempted to corroborate this model using DFT calculations (see SI
for full details), but unfortunately were unable to convincingly find
[10] See reference 2 and: (a) Y. H. Lau, P. de Andrade, Y. Wu, D. R. Spring,
Chem. Soc. Rev. 2015, 44, 91; (b) A. P. Treder, J. L. Hickey, M.-C. J.
Tremblay, S. Zaretsky, C. C. G. Scully, J. Mancuso, A. Doucet, A. K.
Yudin, E. Marsault, Chem. Eur. J. 2015, 21, 9249.
transition state structures for either scenario, which may be a
consequence of these fast reactions operating via very shallow
transitions states. We are therefore unable to comment in a quantitative
fashion about kinetic control in these reactions.
[11] The terminology ‘point-to-axial’ chirality transfer refers to the fact that the
point chirality of linear starting material controls the axial chirality of the
biaryl unit. As the medium-sized ring products overall exhibit planar
chirality we arguably could have used the terminology ‘point-to-planar’
chirality transfer but chose the former as we believe it is more intuitive to
consider the individual stereogenic units. For recent examples of point-
to-axial chiralitytransfer in synthesis, see: (a) T. Qin, S. L. Skraba-Joiner,
Z. G. Khalil, R. P. Johnson, R. J. Capon, J. A. Porco Jr, Nat. Chem. 2015,
7, 234; (b) R. J. Armstrong, M. Nandakumar, R. M. P. Dias, A. Noble, E.
L. Myers, V. K. Aggarwal, Angew. Chem. Int. Ed. 2018, 57, 8203; (c) A.
Link, C. Sparr, Angew. Chem., Int. Ed., 2018, 57, 7136; (d) H. Li, W. Fan,
X. Hong, Org. Biomol. Chem. 2019, 17, 1916.
[22] To compare the energies of the possible diastereoisomers, the structures
were optimised at the M06-2X/6-311G* level, followed by frequency
calculations at the same level. These structures were confirmed as
minima by the absence of imaginary frequencies. The M06-2X/6-311G*
SCF energies were corrected for their zero-point energies, thermal
energies and entropies obtained from the frequency calculations.
Optimisations were performed with tight convergence criteria and no
symmetry constraints were applied. An ultrafine integral grid was used
for all calculations. Solvent corrections were applied with the Polarisable
Continuum Model (PCM) using the integral equation formalism variant
(IEFPCMO). Energies in Hartrees and xyz coordinates are reported in
the SI.
[12] T3P was chosen as the activating agent in view of precedent for its use
for the N-acylation of cyclic imines, see: (a) W. P. Unsworth, C. Kitsiou,
R. J. K. Taylor, Org. Lett. 2013, 15, 258; (b) W. P. Unsworth, G. Coulthard,
C. Kitsiou, R. J. K. Taylor, J. Org. Chem., 2014, 79, 1368; (c) W. P.
Unsworth, R. J. K. Taylor, Synlett 2016, 27, 2051.
[23] Enantiomer ratios were determined using chiral HPLC (see SI). Partial
overlap of signals means that there may be a small amount of error in
the absolute ee value assigned, but what is clear that qualitatively, the
chirality transfer was successful. Further studies will be needed to build
on these preliminary data in the future.
[13] CCDC 1913413 contains the crystallographic data for 11a, see:
[14] Compounds 11q, 11u and 11v exist as concentration dependant
mixtures of rotamers about the newly formed amide bond in CDCl3
solution.
[15] For the importance of atropoisomerism in drug discovery, see: (a) J.
Clayden, W. J. Moran, P. J. Edwards, S. R. L. LaPlante, Angew. Chem.
Int. Ed. 2009, 48, 6398; (b) S. R. L. LaPlante, L. D. Fader, K. R. Fandrick,
D. R. Fandrick, O. Hucke, R. Kemper, S. P. F. Miller, P. J. Edwards, J.
Med. Chem. 2014, 54, 7005; (c) J. E. Smyth, N. M. Butler, P. A. Keller,
Nat. Prod. Rep., 2015, 32, 1562; (d) P. W. Glunz, L. Mueller, D. L.
Cheney, V. Ladziata, Y. Zou, N. R. Wurtz, A. Wei, P. C. Wong, R. R.
Wexler, E. S. Priestley, J. Med. Chem. 2016, 59, 4007; (e) P. W. Glunz,
Bioorg. Med. Chem. Lett. 2018, 28, 53.
This article is protected by copyright. All rights reserved.