Page 5 of 6
ACS Catalysis
1
2
3
4
5
6
7
8
9
Hydrolysis Reactions of Aldehydes and Terminal Alkynes Leading to
Chalcones. Org. Chem. Front. 2016, 3, 294–297.
Ishii, Y. Iridium-Catalyzed Coupling Reaction of Primary Alcohols
with 2-Alkynes Leading to Hydroacylation Products. Chem. Eur. J.
2010, 16, 1883–1888. (d) Fujihara, T.; Katafuchi, Y.; Iwai, T.; Terao,
J.; Tsuji, Y. Palladium-Catalyzed Intermolecular Addition of Forma-
mides to Alkynes. J. Am. Chem. Soc. 2010, 132, 2094–2098. (e) Yang,
J.; Yoshikai, N. Cobalt-Catalyzed Enantioselective Intramolecular
Hydroacylation of Ketones and Olefins. J. Am. Chem. Soc. 2014, 136,
16748–16751.
(8) (a) Favorskii, A. E. J. Russ. Phys. Chem. Soc. 1905, 37, 643. (b)
Tedeschi, R. J. The Mechanism of Base-Catalyzed Ethynylation in
Donor Solvents. J. Org. Chem. 1965, 30, 3045–3049. (c) Babler, J.
H.; Liptak, V. P.; Phan, N. Alkoxide-Catalyzed Addition of Terminal
Alkynes to Ketones. J. Org. Chem. 1996, 61, 416–417. (d) Tzalis, D.;
Knochel, P. Cesium Hydroxide: A Superior Base for the Catalytic
Alkynylation of Aldehydes and Ketones and Catalytic Alkenylation
of Nitriles. Angew. Chem. Int. Ed. 1999, 38, 1463–1465. (e) Miya-
moto, H.; Yasaka, S.; Tanaka, K. Solvent-Free Addition of
Ethynylbenzene to Ketones. Bull. Chem. Soc. Jpn. 2001, 74, 185–186.
(f) Schmidt, E. Y.; Cherimichkina, N. A.; Bidusenko, I. A.; Protzuk,
N. I.; Trofimov, B. A. Alkynylation of Aldehydes and Ketones Using
the Bu4NOH/H2O/DMSO Catalytic Composition: A Wide-Scope
Methodology. Eur. J. Org Chem. 2014, 4663–4670. (g) Trofimov, B.
A.; Schmidt, E. Y. Reactions of Acetylenes in Superbasic Media.
Recent Advances. Russ. Chem. Rev. 2014, 83, 600–619.
(9) (a) Baba, T.; Kizuka, H.; Handa, H.; Ono, Y. Reaction of Ketones
or Aldehydes with 1-Alkynes over Solid-Base Catalysts. Appl. Catal.
A Gen. 2000, 194, 203–211. (b) Ishikawa, T.; Mizuta, T.; Hagiwara,
K.; Aikawa, T.; Kudo, T.; Saito, S. Catalytic Alkynylation of Ketones
and Aldehydes Using Quaternary Ammonium Hydroxide Base. J.
Org. Chem. 2003, 68, 3702–3705. (c) Sun, M.; Shi, Q.; Huang, G.;
Liang, Y.; Ma, Y. A Novel, Simple and Efficient Synthesis of Ferro-
cenyl Enones and Alkynols. Synthesis 2005, 15, 2482–2486. (d)
Schmidt, E. Y.; Bidusenko, I. A.; Protsuk, N. I.; Ushakov, I. A.;
Ivanov, A. V.; Mikhaleva, A. I.; Trofimov, B. A. Features of the
Base-Catalyzed Reaction of 1-Vinyl-4,5-dihydro-1H-benzo[g]indole-
2-carbaldehyde with Phenylacetylene. Chem. Heterocycl. Compd.
2012, 48, 822–824.
(10) (a) Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic
clays: Preparation, properties and applications. Catal. Today 1991, 11,
173–301. (b) Sels, B. F.; De Vos, D. E.; Jacobs, P. A. Hydrotalcite-
like Anionic Clays in Catalytic Organic Reactions. Catal. Rev.: Sci.
Eng. 2001, 43, 443–488. (c) Debecker, D. P.; Gaigneaux, E. M.; Bus-
ca, G. Exploring, Tuning, and Exploiting the Basicity of Hydrotalcites
for Applications in Heterogeneous Catalysis. Chem. Eur. J. 2009, 15,
3920–3935. (d) Xu, Z. P.; Zhang, J.; Adebajo, M. O.; Zhang, H.;
Zhou, C. Catalytic Applications of Layered Double Hydroxides and
Derivatives. Appl. Clay Sci. 2011, 53, 139–150. (e) Fan, G.; Li, F.;
Evans, D. G.; Duan, X. Catalytic Applications of Layered Double
Hydroxides: Recent Advances and Perspectives. Chem. Soc. Rev.
2014, 43, 7040–7066. (f) Hernández, W. Y.; Lauwaert, J.; Voort, P. V.
D.; Verberckmoes, A. Recent Advances on the Utilization of Layered
Double Hydroxides (LDHs) and Related Heterogeneous Catalysts in a
Lignocellulosic-Feedstock Biorefinery Scheme. Green Chem. 2017,
19, 5269–5302.
(11) CeO2 is colored by the adsorption of nitriles or phenols in addi-
tion to alkynes. For the examples, see: (a) Tamura, M.; Kishi, R.;
Nakayama, A.; Nakagawa, Y.; Hasegawa, J.; Tomishige, K. For-
mation of a New, Strongly Basic Nitrogen Anion by Metal Oxide
Modification. J. Am. Chem. Soc. 2017, 139, 11857–11867. (b) Yatabe,
T.; Jin, X.; Mizuno, N.; Yamaguchi, K. Unusual Olefinic C–H Func-
tionalization of Simple Chalcones toward Aurones Enabled by the
Rational Design of a Function-Integrated Heterogeneous Catalyst.
ACS Catal. 2018, 8, 4969–4978.
(4) In this manuscript, formal hydroacylation is defined as the
hydroacylation affording the same product as the classical one
catalyzed by Rh, i.e., NOT enone synthesis via hydration of
alkynes/aldol condensation, nucleophilic addtion/Meyer–Schuster
rearrangement, or aldehyde–alkyne metathesis as the following reports
(Figure S1 can be also referred); for examples on hydration of
alkynes/aldol condensation, see: (a) Jia, H.-P.; Dreyer, D. R.;
Bielawski, C .W. Graphite Oxide as an Auto-Tandem Oxidation–
Hydration–Aldol Coupling Catalyst. Adv. Synth. Catal. 2011, 353,
528–532. (b) Mameda, N.; Peraka, S.; Kodumuri, S.; Chevella, D.;
Banothu, R.; Amrutham, V.; Nama, N. Synthesis of α,β-Unsaturated
Ketones from Alkynes and Aldehydes over Hβ Zeolite under Solvent-
Free Conditions. RSC Adv. 2016, 6, 58137–58141. (c) Zhou, Y.; Li,
Z.; Yang, X.; Chen, X.; Li, M.; Chen, T.; Yin, S.-F. Phosphorous
Acid Promoted Hydration–Condensation of Aromatic Alkynes with
Aldehydes Affording Chalcones in an Oil/Water Two-Phase System.
Synthesis 2016, 48, 231–237. For examples on nucleophilic
addtion/Meyer–Schuster rearrangement, see: (d) Engel, D. A.; Dudley,
G. B. Olefination of Ketones Using a Gold(III)-Catalyzed Mey-
er−Schuster Rearrangement. Org. Lett. 2006, 8, 4027–4029. (e)
Mattia, E.; Porta, A.; Merlini, V.; Zanoni, G.; Vidari, G. One-Pot
Consecutive Reactions Based on the Synthesis of Conjugated Enones
by the Re-Catalysed Meyer–Schuster Rearrangement. Chem. Eur. J.
2012, 18, 11894–11898. For examples on aldehyde–alkyne metathesis,
see: (f) Hayashi, A.; Yamaguchi, M.; Hirama, M. SbF5-Promoted
Addition of Aldehydes to Alkynes. Synlett 1995, 195–196 (g) Miura,
K.; Yamamoto, K.; Yamanobe, A.; Ito, K.; Kinoshita, H.; Ichikawa,
J.; Hosomi, A. Indium(III)-Catalyzed Coupling between Alkynes and
Aldehydes to α,β-Unsaturated Ketones. Chem. Lett. 2010, 39, 766–
767 (h) Masuyama, Y.; Takamura, W.; Suzuki, N. Tin(II) Chloride
Mediated Coupling Reactions between Alkynes and Aldehydes. Eur.
J. Org. Chem. 2013, 8033–8038 (i) Murai, K.; Tateishi, K.; Saito, A.
Barluenga's Reagent with HBF4 as an Efficient Aatalyst for Alkyne-
Carbonyl Metathesis of Unactivated Alkynes. Org. Biomol. Chem.
2016, 14, 10352–10356.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) In the pioneering work, only gloxyals can be used as the substrate
of aldehydes, see: Shi, S.; Wang, T.; Weingand, V.; Rudolph, M.;
Hashmi, A. S. K. Gold(I)-Catalyzed Diastereoselective Hydroacyla-
tion of Terminal Alkynes with Glyoxals. Angew. Chem. Int. Ed. 2014,
53, 1148–1151.
(6) Before Hashmi’s report,4 the literature contains one report for Cu
nanoparticles-catalyzed formal hydroacylation; however, the substrate
scope was only limited to 2-formyl pyridine (or quinoline) and the
reaction mechanism was unknown. For the report, see: Albaladejo, M.
J.; Alonso, F.; Yus, M. Synthesis of Indolizines and Heterocyclic
Chalcones Catalyzed by Supported Copper Nanoparticles. Chem. Eur.
J. 2013, 19, 5242–5245.
(7) (a) Chen, S.; Li, X.; Zhao, H.; Li, B. CuBr-Promoted Formal Hy-
droacylation of 1-Alkynes with Glyoxal Derivatives: An Unexpected
Synthesis of 1,2-Dicarbonyl-3-enes. J. Org. Chem. 2014, 79, 4137–
4141. (b) Albaladejo, M. J.; Alonso, F.; González-Soria, M. J. Syn-
thetic and Mechanistic Studies on the Solvent-Dependent Copper-
Catalyzed Formation of Indolizines and Chalcones. ACS Catal. 2015,
5, 3446–3456. (c) Rajesh, U. C.; Purohit, G.; Rawat, D. S. One-Pot
Synthesis of Aminoindolizines and Chalcones Using CuI/CSP Nano-
composites with Anomalous Selectivity under Green Conditions. ACS
Sustainable Chem. Eng. 2015, 3, 2397–2404. (d) Nguyen, N. B.;
Dand, G. H.; Le, D. T.; Truong, T.; Phan, N. T. S. Synthesis of 1,2-
Dicarbonyl-3-enes by Hydroacylation of 1-Alkynes with Glyoxal
Derivatives Using Metal–Organic Framework Cu/MOF-74 as Hetero-
geneous Catalyst. ChemPlusChem 2016, 81, 361–369. (e) Zhao, Y.;
Song, Q. Copper-Catalyzed Tandem A3-Coupling–Isomerization–
(12) XRD patterns, DR UV-Vis spectra, and FT-IR spectra of LDH–
2a (stirred for 15 h) and Mg3Al–CO3 LDH were shown in Figure S5–
S7.
(13) When the reaction from 1a and 2a with benzoic acid was con-
ducted under the conditions where 3aa yield reached 87% as of 24 h
without benzoic acid, an induction period was observed, which was
likely derived from the formation of alkynyl nucleophilic species on
Mg3Al–CO3 LDH (Figure S10a). Also, when the amount of benzoic
acid was increased from 20 mol% to 40 mol%, the initial rate after the
induction period decreased linearly (Figure S10b,c). With 50 mol% of
benzoic acid, the initial rate became close to zero, and the yield of 3aa
was only 5% after 50 h, which was the same as that as of 24 h (Table
S3), indicating that this system is catalytic.
ACS Paragon Plus Environment