Paper
L. Cavigli, K. Bernot, R. Sessoli, M. Gurioli and
Dalton Transactions
A. Goti, I. Y. Bagryanskaya, N. V. Kuratieva and
I. A. Grigor’ev, J. Org. Chem., 2012, 77, 10688–10698;
(d) A. D. Milov, Y. D. Tsvetkov, M. Bortolus, A. L. Maniero,
M. Gobbo, C. Toniolo and F. Formaggio, Biopolymers, 2014,
102, 40–48; (e) M. De Zotti, K. Wright, E. d’Aboville,
A. Toffoletti, C. Toniolo, G. Longhi, G. Mazzeo, S. Abbate
and F. Formaggio, J. Org. Chem., 2017, 82, 10033–10042.
11 G. I. Likhtenshtein, Nitroxides. Brief History, Fundamentals,
and Recent Developments, Springer, Cham, CH, 2020.
D. Gatteschi, J. Mater. Chem., 2006, 16, 2587–2592;
(d) R. Sessoli, M. E. Boulon, A. Caneschi, M. Mannini,
L. Poggini, F. Wilhelm and A. Rogalev, Nat. Phys., 2015, 11,
69–74; (e) J. A. Rodriguez-Velamazan, O. Fabelo, J. Campo,
J. Rodriguez-Carvajal, N. Qureshi and L. C. Chapon, Sci.
Rep., 2018, 8, 1–7; (f) K. Ishii, S. Hattori and Y. Kitagawa,
Photochem. Photobiol. Sci., 2020, 19, 8–19.
3 (a) K. Hemmat, M. A. Nasseri and A. Allahresani, Appl.
Organomet. Chem., 2019, 33, e4937; (b) G. Goyal, S. Bhakta 12 (a) M. Minguet, D. Luneau, C. Paulsen, E. Lhotel,
and P. Mishra, ACS Appl. Nano Mater., 2019, 2, 6747–6756.
4 (a) A. Caneschi, A. Grand, J. Laugier, P. Rey and R. Subra,
J. Am. Chem. Soc., 1988, 110, 2307–2309; (b) J. Laugier,
J. M. Latour, A. Caneschi and P. Rey, Inorg. Chem., 1991, 30,
A. Gorski, J. Waluk, D. B. Amabilino and J. Veciana,
Polyhedron, 2003, 22, 2349–2354; (b) C. Hirel, J. Pécaut,
S. Choua, P. Turek, D. B. Amabilino, J. Veciana and P. Rey,
Eur. J. Org. Chem., 2005, 348–359.
4474–4477; (c) I. Ratera and J. Veciana, Chem. Soc. Rev., 13 M. Akita-Tanaka, H. Kumagai, A. Markosyan and K. Inoue,
2012, 41, 303–349. Bull. Chem. Soc. Jpn., 2007, 80, 204–207.
5 (a) M. G. Capraro, P. Franchi, O. Lanzalunga, A. Lapi and 14 (a) H. Kumagai and K. A. Inoue, Angew. Chem., Int. Ed.,
M. Lucarini, J. Org. Chem., 2014, 79, 6435–6443;
(b) S. Hamada, Y. Wada, T. Sasamori, N. Tokitoh, T. Furura
1999, 38, 1601–1603; (b) K. Inoue, H. Kumagai and
A. S. Markosyan, Synth. Met., 2001, 121, 1772–1773.
and T. Kawabata, Tetrahedron Lett., 2014, 55, 1943–1945; 15 Y. Numata, K. Inoue, N. Baranov, M. Kurmoo and
(c) M. Carbó-López, P. Y. Chavant, F. Molton, G. Royal and
V. Blandin, ChemistrySelect, 2017, 2, 443–450.
6 (a) D. B. Amabilino, in Chirality in Supramolecular
K. Kikuchi, J. Am. Chem. Soc., 2007, 129, 9902–9909.
16 X. Liu, Y. Zhang, W. Shi and P. Cheng, Inorg. Chem., 2018,
57, 13409–13414.
Assemblies: Causes and Consequences, ed. F. R. Keene, John 17 A. A. Patrascu, M. Briganti, S. Soriano, S. Calancea,
Wiley & Sons, New York, 2017, ch. 6, pp. 159–189;
(b) W. Zhai, Y. Feng, H. Liu, A. Rockenbauer, D. Mance,
R. A. Allão-Cassaro, F. Totti, M. G. F. Vaz and M. Andruh,
Inorg. Chem., 2019, 58, 13090–13101.
S. Li, Y. Song, M. Baldus and Y. Liu, Chem. Sci., 2018, 9, 18 R. Tanimoto, S. Suzuki, M. Kozaki, D. Shiomi, K. Sato,
4381–4391.
T. Takui and K. Okada, Bull. Chem. Soc. Jpn., 2014, 87, 314–
7 (a) Y. Takemoto, T. Yamamoto, N. Ikuma, Y. Uchida,
322.
K. Suzuki, S. Shimono, H. Takahashi, N. Sato, Y. Oba, 19 (a) T.-N. Le, H. Grewal, V. Changoco, V. Truong and
R. Inoue, M. Sugiyama, H. Tsue, T. Kato, J. Yamauchi and
R. Tamura, Soft Matter, 2015, 11, 5563–5570; (b) K. Suzuki,
Y. Takemoto, S. Takaoka, K. Taguchi, Y. Uchida,
D. G. Mazhukin, I. A. Grigorév and R. Tamura, Chem.
Commun., 2016, 52, 3935–3938; (c) Y. Takemoto, Y. Uchida,
D. J. R. Brook, Tetrahedron, 2016, 72, 6368–6374;
(b) A. B. Solea, T. Wohlhauser, P. Abbasi,
Y. Mongbanziama, A. Crochet, K. M. Fromm, G. Novitchi,
C. Train, M. Pilkington and O. Mamula, Dalton Trans.,
2018, 47, 4785–4789.
S. Shimono, J. Yamauchi and R. Tamura, Mol. Cryst. Liq. 20 For examples of P-containing C-chiral cyclic nitroxyl rad-
Cryst., 2017, 647, 279–289; (d) S. Nakagami, T. Akita,
D. Kiyohara, Y. Uchida, R. Tamura and N. Nishiyama,
J. Phys. Chem. B, 2018, 122, 7409–7415.
8 (a) X.-Y. Qin, G.-R. Ding, X.-W. Wang, J. Tan, G.-Z. Guo and
X.-L. Sun, J. Chem. Res., 2009, 511–514; (b) T.-Y. Shi,
icals see: (a) S. Shimono, H. Takahashi, N. Sakai,
R. Tamura, N. Ikuma and J. Yamauchi, Mol. Cryst. Liq.
Cryst., 2005, 440, 37–52; (b) A. Hatano, N. Terado,
Y. Kanno, T. Nakamura and G. Kawai, Synth. Commun.,
2019, 49, 136–145.
D.-Q. Zhao, H.-B. Wang, S. Feng, S.-B. Liu, J.-H. Xing, Y. Qu, 21 Phosphates: (a) S. Iwamoto, W. Kai, T. Isogai, T. Saito,
P. Gao, X.-L. Sun and M.-G. Zhao, Neurotherapeutics, 2013,
10, 340–353; (c) M. Tian, T. Lan, M. Gao, B. Li, G. Zhang
and H.-B. Wang, Aust. J. Chem., 2019, 72, 492–500.
9 (a) R. Tamura, S. Susuki, N. Azuma, A. Matsumoto, F. Toda,
A. Kamimura and K. Hori, Angew. Chem., Int. Ed. Engl.,
1994, 33, 878–879; (b) M. Minguet, D. B. Amabilino,
K. Wurst and J. Veciana, J. Solid State Chem., 2001, 159,
440–450.
10 (a) G. I. Likhtenshtein, J. Yamauchi, S. Nakatsuji,
A. I. Smirnov and R. Tamura, Nitroxides: Applications in
Chemistry, Biomedicine, and Materials Science, Wiley-VCH,
Weinheim, 2008, ch. 9, pp. 303–329; (b) H. Wang, P. Gao,
A. Isogai and T. Iwata, Polym. Degrad. Stab., 2010, 95, 1394–
1398; (b) I. Sadowska-Bartosz, I. Stefaniuk, B. Cieniek and
G. Bartosz, Free Radical Res., 2017, 52, 335–338
Phosphazenes: (c) E. Badetti, V. Lloveras, J. L. Muñoz-
Gómez, R. M. Sebastián, A. M. Caminade, J. P. Majoral,
J. Veciana and J. Vidal-Gancedo, Macromolecules, 2014, 47,
7717–7724 Phosphonates: (d) H. Moons, E. Goovaerts,
V. P. Gubskaya, I. A. Nuretdinov, C. Corvaja and L. Franco,
Phys. Chem. Chem. Phys., 2011, 13, 3942–3951
Phosphoramidites: (e) C. H. Wunderlich, R. G. Huber,
R. Spitzer, K. R. Liedl, K. Kloiber and C. Kreutz, ACS Chem.
Biol., 2013, 8, 2697–2706.
L. Jing, X. Sun and R. Jiang, Acta Chim. Slov., 2012, 59, 413– 22 (a) S. G. Reis, M. A. del Águila-Sánchez, G. P. Guedes,
417; (c) D. A. Morozov, I. A. Kirilyuk, D. A. Komarov,
G. B. Ferreira, M. A. Novak, N. L. Speziali, F. López-Ortiz
2594 | Dalton Trans., 2021, 50, 2585–2595
This journal is © The Royal Society of Chemistry 2021